• Title/Summary/Keyword: and cinnamtannin $B_1$

Search Result 5, Processing Time 0.023 seconds

Isolation and Quantitative Analysis of Cinnamtannin B-1 from Osmunda japonica Thunb (고비로부터 Cinnamtannin B-1의 분리 및 함량 분석)

  • Kim, Min Suk;Woo, Kyeong Wan;Lee, Ki Ho;Lee, Hyun Joo;Lee, Seon Yu;Kang, Byoung Man;Jeon, Byung Hun;Cho, Jung Hee;Cho, Hyun Woo
    • Korean Journal of Pharmacognosy
    • /
    • v.47 no.3
    • /
    • pp.232-236
    • /
    • 2016
  • In traditional Korean medicine, Osmunda japonica Thunb has been used as hemostasis and antipyretic treatment. The main compound "cinnamtannin B-1" was obtained by column chromatographic separation, and its structure was determined by spectroscopic methods, including $^1H$, $^{13}C$ NMR, and IT-TOF-ESI MS. Ash, moisture and extract content and acidinsoluble ash were monitored as identification test to establish the analytical methods. The optimum reflux extraction condition was 100% methanol extracted 30 min for 2 times. A quantitative analysis using HPLC method exhibited that the main compound at 24.7 min and its content was 0.96% in methanol extraction.

The chemical structure of polyphenols isolated from cacao bean and their inhibitory effect on ACE (Cacao bean으로부터 분리된 polyphenol 성분의 화학구조분석과 ACE 저해효과)

  • Chang, Young-Youl;Yim, Moo-Hyun;Lee, Man-Chong
    • Applied Biological Chemistry
    • /
    • v.41 no.1
    • /
    • pp.110-117
    • /
    • 1998
  • Seven kinds of polyphenol compounds having ACE activities were isolated and purified by Sephadex LH-20, MCI-gel CHP-20, ${\um}-Bondapak\;C_{18}$ and Fuji-gel ODS $G_3$ sucessively from cacao bean(Ghana). The chemical structures of each compound were determined and identified using analyzers such as $^1H-NMR$, $^{13}C-NMR$, IR, MS, polarimeter and Elemental Analysis. Inhibition effects of isolated polyphenols on angiotensin converting enzyme (concerned with hypertension) were also observed. The results obtained were as follows,; The compounds isolated and identified were confirmed and determined as compound 1 [(+)-catechin], compound 2 [(-)-epicatechin], compound 3 [procyanidin B-1 : (-)-epicatechin-$(4{\beta}{\rightarrow}8)$-(+)catechin], compound 4 [procyanidin B-2 : (-)-epicatechin-$(4{\beta}{\rightarrow}8)$-(-)-epicatechin], compound 5 [procyanidin B-7 : (-)-epicatechin-$(4{\beta}{\rightarrow}6)$-(+)-catechin], campound 6 (procyanidin B-2,3,3'-O -digallate), compound 7 [cinnamtannin A-2 : (-)-epicatechin-$(4{\beta}{\rightarrow}8)$-(-)-epicatechin-$(4{\beta}{\rightarrow}8)$-(-)-epicatechin-$(4{\beta}{\rightarrow}8)$-(-)-epicatechin]. In the inhibition effect on ACE, procyanidin B-2,3,3'-O-digallate (compound 6) showed a higher value of 94.6% for ACE in $100\;{\um}M$ than other compounds such as (+)-catechin (compound 1), (-)-epicatechin (compound 2), procyanidin B-1 (compound 3), procyanidin B-2 (compound 4), procyanidin B-7 (compound 5) and cinnamtannin A-2 (compound 7) showing 67.9%, 61.9%, 88.6%, 82.5%, 72.2% and 82.3% for ACE, respectively. Inhibition of $4{\beta}{\rightarrow}8$ in coupling bond on the ACE enzyme was more effective than that of $4{\beta}{\rightarrow}6$. Procyanidin containing gallate inhibited more effectively than those containing not any. It was also observed that a lot of hydroxy group in the compounds increased the inhibitory effect.

  • PDF

Procyanidins from Acer komarovii Bark

  • Lee, Tae-Sung;Kwon, Dong-Joo;Bae, Young-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.2
    • /
    • pp.214-223
    • /
    • 2015
  • The bark of Acer komarovii was collected, ground, and extracted with 70% aqueous acetone to obtain concentrates. The concentrates were suspended in $H_2O$, and then successively partitioned with n-hexane, dichloromethane and ethylacetate to be freeze dried. A portion of ethylacetate fraction was chromatographed on a Sephadex LH-20 and a RP C-18 column with various aqueous MeOH-$H_2O$ (1:0, 1:1, 1:2, 1:5, 1:7, 1:9, 1:10, 3:1, and 4:1, v/v) eluents. Four compounds were isolated; (-)-epicatechin (9.6 g), procyanidin A2 (epicatechin-($4{\beta}{\rightarrow}8$, $2{\beta}{\rightarrow}O{\rightarrow}7$)-epicatechin) (1.3 g), procyanidin B2 (epicatechin-($4{\beta}{\rightarrow}8$)-epicatechin) (40.0 mg), and cinnamtannin B1 (epicatechin-($4{\beta}{\rightarrow}8$, $2{\beta}{\rightarrow}O{\rightarrow}7$)-epicatechin-($4{\beta}{\rightarrow}8$)-epicatechin) (690 mg). The analysis of the bark procyanidins showed that the basic unit constituting condensed tannins was only (-)-epicatechin. This study, for the first time, report the procyanidins of Acer komarovii bark.

Comparative Analysis of the Constituents of the Leaves and Roots of Rumex crispus and their Effects on the Differentiation of Human Osteoblast-like MG-63 Cells (소리쟁이 잎과 뿌리 성분 분석 및 사람 조골 유사 MG-63 세포 분화에 미치는 효과 비교)

  • Park, Heajin;Jeong, Jaehoon;Hyun, Hanbit;Kim, Jihye;Kim, Haesung;Oh, Hyun Il;Hwang, Hye Seong;Kim, Ha Hyung
    • YAKHAK HOEJI
    • /
    • v.58 no.5
    • /
    • pp.307-313
    • /
    • 2014
  • Rumex crispus (curled dock), which is a perennial wild plant, has long been used as a laxative, astringent, and medicine to treat blood and skin diseases. We recently reported that the roots of R. crispus are an effective nutraceutical for bone. This study prepared ethanol extracts of the leaves and roots of R. crispus, and analyzed the major constituents using liquid chromatography and mass spectrometry. In addition, their effects on the proliferation and differentiation of human osteoblast-like MG-63 cells, such as cell viability, alkaline phosphatase (ALP) activity, collagen content, and mineralization, were compared. The chromatograms of the chemical constituents of the two extracts exhibited quite different profiles: quercetin and quercitrin were identified as major peaks in the leaf extract, whereas cinnamtannin B1 and procyanidin isomers were the major peaks for the root extract. Neither extract was cytotoxic at concentrations of < $25{\mu}g/ml$. ALP activity and collagen synthesis-which are markers of the early stage of osteogenesis-in MG-63 cells were significantly increased upon the addition of the root extract compared with the addition of the leaf extract. In contrast, the leaf extract had a more stimulatory effect on mineralization-which is marker of the late stage of osteogenesis-in MG-63 cells than did the root extract. In conclusion, extracts of both leaves and roots of R. crispus stimulated the bone-forming activity of osteoblasts; in particular, the root extract was more effective in the early stage of osteoblast differentiation, while the leaf extract was more effective in the late stage. This difference in anabolic activity may be due to differences in the constituents of the leaves and roots. The leaves and roots of R. crispus appear to complement each other as stimulators of bone formation.