• Title/Summary/Keyword: and chemical pre-treatment

Search Result 362, Processing Time 0.026 seconds

The Effects of Sputtering conditions in Pre Sputtering on the Formation Behavior of Nitride Layer in the Ion Nitriding of Stainless Steel (초기 스퍼터링조건이 스테인리스강의 이온질화시 지로하층 형성거동에 미치는 영향)

  • 최상진
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.197-203
    • /
    • 1999
  • Stainless steels in general has passive film having strong corrosion resistance on surface. Therefore it must be necessarily removed by etching in mixing solution of sulfuric and chloric acid before Nitriding treatment. But in the ion nitriding, nitride layer was easily formed because passive film was removed without difficult by sputtering effect. The removal extent of these passive films was greatly effected by gas mixing ratios and pressure and holding times of pre sputtering factors in pre sputtering stage. As a results of experiment it has been known that pre sputtering pressure and holding time was not nearly effective on the formation behavior of nitride layer. But when A/H2 gas mixing ratios was 1/2 (vol%) was the most effective of the all pre sputtering conditions. It was resulted from the combination of mechanical reaction byArgon bombardment and chemical reaction by reduction of hydrogen on the passive film.

  • PDF

A Study on Cost-effective Treatment of Wastewater and Odor Reduction for Southeast Asian Market Entry

  • Jung, Min-Jae;Kim, Yong-Do;Kwon, Lee-Seung;Lee, Woo-Sic;Kwon, Woo-Taeg
    • The Journal of Industrial Distribution & Business
    • /
    • v.9 no.12
    • /
    • pp.23-29
    • /
    • 2018
  • Purpose - The purpose of this study is to apply a cost effective ultrasonic odor reduction method that generated micro-bubbles using ejector to the Southeast Asian wastewater market. Research design, data, and methodology - A leather maker located in Ansan-city, Gyunggi-do, South Korea was sampled from the collection tank to select experimental materials. Experimental setup consisted of circulating water tank-air ejector-ultrasonic device, and circulating wastewater. Sample analysis was performed by CODcr, T-N, T-P, and turbidity by the National Environmental Science Institute. Results - Experimental results show that it is most effective in removing odors when the frequency range of ultrasonic wave is 60~80 Khz and the output is 200 W. It showed that the concentration of complex odor dropped from a maximum of 14,422 times to a minimum of 120 times. Also, analysis of ammonia and hydrogen sulfide in specific odor substances has shown that they were reduced from 1.5 ppm to 0.4 ppm and from 0.6 ppm to 0.1 ppm, respectively. Conclusions - It is possible to shorten more than 12 hours in the treatment of micro-organisms. It can be seen that the processing time of odor after ultrasonic treatment in the pre-treatment facility is reduced by 25% when compared to the resultant micro-organisms after the chemical treatment, that is, the time of the bio-treatment of micro-organisms. Based on the results, it was confirmed that the pre-treatment method using the ultrasonic and the air ejector device of the experiment shows the effect of reducing the water pollutants and odor more effectively in a relatively short time than the conventional advanced oxidation method.

Application of membrane distillation process for tap water purification

  • Gryta, Marek
    • Membrane and Water Treatment
    • /
    • v.1 no.1
    • /
    • pp.1-12
    • /
    • 2010
  • Membrane distillation process was used for purification of pre-treated natural water (tap water). The rejection of inorganic and organic compounds in this process was investigated. The obtained rejection of inorganic solutes was closed to 100%, but the volatile organic compounds (VOCs) diffused through the membrane together with water vapour. The content of trihalomethanes (THMs) in the obtained distillate was two-three fold higher than that in the feed, therefore, the rejection of the total organic compounds present in the tap water was reduced to a level of 98%. The intensive membranes scaling was observed during the water separation. The morphology and composition of the fouling layer was studied using scanning electron microscopy coupled with energy dispersion spectrometry. The influence of thermal water pre-treatment performed in a heat exchanger followed by filtration on the MD process effectiveness was evaluated. This procedure caused that significantly smaller amounts of $CaCO_3$ crystallites were deposited on the membrane surface, and a high permeate flux was maintained over a period of 160 h.

Silver elimination effect by sulfuric acid for Ag pre-treated activated carbon

  • Oh, Won-Chun
    • Analytical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.121-130
    • /
    • 2006
  • In this study, silver pre-treated activated carbons are transformed using sulfuric acid. From the results of adsorption, each isotherm shows a distinct knee band, which is characteristic of microporous adsorbents with capillary condensation in micropores. In order to reveal the causes of the differences in adsorption capacity and specific surface area after the samples were washed with various strengths of sulfuric acid, surface morphology and external pore structure were investigated by SEM. X-ray diffraction patterns indicated that Ag-activated carbons show better performance for silver and silver compounds removal by post-treatment with acid. The FT-IR spectra of silver-activated carbon samples show that the acid post-treatment was consequently associated with the removal of silver with an increased surface functional group containing oxygen of the activated carbon. The type and quality of oxygen groups are determined on the method proposed by Boehm. For the chemical composition microanalysis of silver-activated carbons transformed by post-treatment with sulfuric acid, samples were analyzed by EDX.

Structural evolution and kinetic study of high isotacticity poly(acrylonitrile) during isothermal pre-oxidation

  • Zhang, Li;Dai, Yongqiang;Kai, Yi;Jin, Ri-Guang
    • Carbon letters
    • /
    • v.12 no.4
    • /
    • pp.229-235
    • /
    • 2011
  • Isotactic polyacrylonitrile (PAN) with triad isotacticity of 0.53, which was determined by $^{13}C$ NMR, using dialkylmagnesium as an initiator, was successfully synthesized. Isothermal treatment of iso-PAN was conducted in air at 200, 220, 250 and $280^{\circ}C$. Structural evolutions and chemical changes were studied with Fourier transformation infrared and wide-angle X-ray diffraction during stabilization. A new parameter $CNF={I_{2240cm}}^{-1}/ ({I_{1595cm}}^{-1}+f^*{I_{1595cm}}^{-1})$ was defined to evaluate residual nitrile groups. Crystallinity and crystal size were calculated with X-ray diffraction dates. The results indicated that the nitrile groups had partly converted into a ladder structure as stabilization proceeded. The rate of reaction increased with treatment temperature; crystallinity and crystal size decreased proportionally to pyrolysis temperature. The iso-conversional method coupled with the Kissinger and Flynn-Wall-Ozawa methods were used to determine kinetic parameters via differential scanning calorimetry analysis with different heating rates. The active energy of the reaction was 171.1 and 169.1 kJ/mol, calculated with the two methods respectively and implied the sensitivity of the reaction with temperature.

UF pretreatment at elevated temperature within the scheme of hybrid desalination: Performance and environmental impact

  • Agashichev, Sergey;Kumar, Jayesh
    • Membrane and Water Treatment
    • /
    • v.8 no.3
    • /
    • pp.279-292
    • /
    • 2017
  • This study was aimed at ultrafiltration (UF) as a pretreatment before reverse osmosis (RO) within the scheme of hybrid reverse osmosis-multistage flush (RO-MSF) desalination. Seawater at elevated temperature (after MSF heat-exchangers) was used as a feed in this process. The pretreatment system was represented as a set of functionally-linked technological segments such as: UF filtration, backwashing, chemical- enhanced backwashing, cleaning, waste disposal, etc. The process represents the sequences of operating cycles. The cycle, in turn, consists of the following unit operations: filtration, backwashing and chemical-enhanced backwashing (CEB). Quantitative assessment was based on the following indicators: normalized permeability, transmembrane pressure, specific energy and water consumption, specific waste generation. UF pre-treatment is accompanied by the following waste streams: $W1=1.19{\times}10$ power of $-2m^3$ (disposed NaOCl with 0.0044% wt.)/$m^3$ (filtrate); $W2=5.95{\times}10$ power of $-3m^3$ (disposed $H_2SO_4$ with 0.052% wt.)/$m^3$(filtrate); $W3=7.26{\times}10$ power of $-2m^3$ (disposed sea water)/$m^3$ (filtrate). Specific energy consumption is $1.11{\times}10$ power of $-1kWh/m^3$ (filtrate). The indicators evaluated over the cycles with conventional (non-chemical) backwashing were compared with the cycles accompanied by CEB. A positive impact of CEB on performance indicators was demonstrated namely: normalized UF resistance remains unchanged within the regime accompanied by CEB, whereas the lack of CEB results in 30% of its growth. Those quantitative indicators can be incorporated into the target function for solving different optimization problems. They can be used in the software for optimisation of operating regimes or in the synthesis of optimal flow- diagram. The cycle characteristics, process parameters and water quality data are attached.

Disintegration of Sewage Sludge Using Mechanical Pre-treatment (기계식 전처리를 이용한 하수슬러지의 가용화)

  • Lee, Chae-Young;Yoo, Hwang-Ryong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.3
    • /
    • pp.82-90
    • /
    • 2009
  • Disintegration of sewage sludge (SS) was investigated by batch experiments using mechanical pre-treatment. Mechanical disintegration of SS increased the amount of soluble chemical oxygen demand (SCOD), protein and carbohydrate due to the break-up of cell walls. The mechanical disintegration incorporated with alkaline pre-treatment demonstrated higher amount of SCOD compared with mechanical one only. In terms of anaerobic biodegradability, mechanical pretreatment enhanced the anaerobic biodegradation of SS, leading to the methane production improvement. The improvement in BMP for SS treated with mechanical and alkaline-mechanical pre-treatments were 24.1% and 44.5%, respectively. This result suggested that disintegration of SS was effective for improving anaerobic biodegradability.

Volatile Fatty Acid Production from Saccharina japonica Extracts by Anaerobic Fermentation: Evaluation of Various Environmental Parameters for VFAs Productivity (혐기성 발효에 의한 다시마 추출물로부터 휘발성 유기산 제조: 휘발성 유기산 생산성에 대한 환경적 영향인자 평가)

  • Choi, Jae Hyung;Song, Min Kyung;Chun, Byung Soo;Lee, Chul Woo;Woo, Hee Chul
    • Clean Technology
    • /
    • v.19 no.2
    • /
    • pp.148-155
    • /
    • 2013
  • Volatile fatty acids (VFAs) production from marine brown algae, Saccharina japonica, was investigated in anaerobic dark fermentation. In order to evaluate the VFAs productivity, various experimental parameters (i.e., physicochemical pre-treatment, microorganism inoculation ratio, substrate concentration, and pH) were evaluated. According to the physicochemical pre-treatment methods, the maximum concentrations of VFAs were obtained in the order of sulfuric acid, subcritical water and subcritical water with lipid-extraction. Also, we investigated the operating parameters such as microorganism inoculation ratio (MV/M = 10 to 30), the substrate concentration (18.0 to 72.0 g/L) and pH (6.0 to 7.0) in sulfuric acid pre-treatment method. When the substrate concentrations were 18.0, 36.0, 54.0 and 72.0 g/L at $35^{\circ}C$, microorganism inoculation ratio 15, pH 7.0 for 372 hours, the maximum concentrations of VFAs were respectively 9.8, 13.9, 18.6 and 22.3 g/L. The change in VFAs concentrations was detected that acetic- and propionic acids increased according to increasing pH, while the butyric acid increased with decreasing pH. The VFAs obtained from concentration and separation process may be used as basic chemistry materials and bio-fuel, and they will expect to produce alternative energy of fossil fuel.

Pre-ozonation for removal of algal organic matters (AOMs) and their disinfection by-products (DBPs) formation potential

  • Jing Wang;Se-Hyun Oh;Yunchul Cho
    • Membrane and Water Treatment
    • /
    • v.14 no.2
    • /
    • pp.77-83
    • /
    • 2023
  • As a result of algal bloom, algal organic matters (AOMs) are rapidly increased in surface water. AOMs can act as precursors for the formation of harmful disinfection by-products (DBPs), which are serious problems in water treatment and human health. The main aim of this study is to characterize the formation of DBPs from AOMs produced by three different algae such as Oscillatoria sp., Anabaena sp., and Microcystis aeruginosa under different algal growth phases. In an effort to examine formation of DBPs during chlorination, chloroform (TCM), dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) were determined under various CT (product of disinfectant concentration and contact time, mg·min/L) values. Generally, the amounts of DBPs tended to increase with increasing CT values at the most growth phases. However, there was a significant difference between the amounts of DBPs produced by the three algal species at different growth phases. This result is likely due to the chemical composition variability of AOM from different algae at different growth phases. In addition, the effect of pre-ozonation on coagulation for the removal of AOMs from three algal species was investigated. The pre-ozonation had a positive effect on the coagulation/flocculation of AOMs.

Potassium loading effects for activated carbon fiber pre-treated with phosphoric acid (인산을 전처리한 활성탄소섬유에 칼륨 처리효과)

  • Oh, Won-Chun;Bae, Jang-Soon
    • Analytical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.355-361
    • /
    • 2005
  • The objective of this paper is to compare the surface features of two kinds of activated caron fiber (ACF) treated with potassium and the variation of their properties by phosphoric acid pre-treatment. X-ray diffraction (XRD) patterns indicate that activated carbon fiber containing potassium species show better performance for metal and metal salts by pre-treatment with phosphoric acid. In order to present the causes of the differences in surface properties and specific surface area after the samples were treated with phosphoric acid, pore structure and surface morphology were investigated by adsorption analysis and SEM. For the chemical composition microanalysis for potassium leading of the activated carbon fibers pre-treated with phosphoric acid, samples were analyzed by EDX. Finally, the type and quality of oxygen groups were determined from the method proposed by Boehm.