• Title/Summary/Keyword: and Sentinel-2

Search Result 251, Processing Time 0.037 seconds

Image Fusion of Lymphoscintigraphy and Real images for Sentinel Lymph Node Biopsy in Breast Cancer Patients (유방암 환자의 감시림프절 생검을 위한 림포신티그라피와 실사영상의 합성)

  • Jeong, Chang-Bu;Kim, Kwang-Gi;Kim, Tae-Sung;Kim, Seok-Ki
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.2
    • /
    • pp.114-122
    • /
    • 2010
  • This paper presents a method that registers a lymphoscintigraphy to the real image captured by a CMOS camera, which helps surgeons to easily and precisely detect sentinel lymph nodes for sentinel lymph node biopsy in breast cancer patients. The proposed method consists of two steps: pre-matching and image registration. In the first step, we localize fiducial markers in a lymphoscintigraphy and a real image of a four quadrant bar phantom by using image processing techniques, and then determines perspective transformation parameters by matching with the corresponding marker points. In the second step, we register a lymphoscintigraphy to a real images of patients by using the perspective transformation of pre-matching. To examine the accuracy of the proposed method, we conducted an experiment with a chest mock-up with radioactive markers. As a result, the euclidean distance between corresponding markers was less than 3mm. In conclusion, the present method can be used to accurately align lymphoscintigraphy and real images of patients without attached markers to patients, and then provide useful anatomical information on sentinel lymph node biopsy.

Atmospheric Correction of Sentinel-2 Images Using GK2A AOD: A Comparison between FLAASH, Sen2Cor, 6SV1.1, and 6SV2.1 (GK2A AOD를 이용한 Sentinel-2 영상의 대기보정: FLAASH, Sen2Cor, 6SV1.1, 6SV2.1의 비교평가)

  • Kim, Seoyeon;Youn, Youjeong;Jeong, Yemin;Park, Chan-Won;Na, Sang-Il;Ahn, Hoyong;Ryu, Jae-Hyun;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.647-660
    • /
    • 2022
  • To prepare an atmospheric correction model suitable for CAS500-4 (Compact Advanced Satellite 500-4), this letter examined an atmospheric correction experiment using Sentinel-2 images having similar spectral characteristics to CAS500-4. Studies to compare the atmospheric correction results depending on different Aerosol Optical Depth (AOD) data are rarely found. We conducted a comparison of Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH), Sen2Cor, and Second Simulation of the Satellite Signal in the Solar Spectrum - Vector (6SV) version 1.1 and 2.1, using Geo-Kompsat 2A (GK2A) Advanced Meteorological Imager (AMI) and Aerosol Robotic Network (AERONET) AOD data. In this experiment, 6SV2.1 seemed more stable than others when considering the correlation matrices and the output images for each band and Normalized Difference Vegetation Index (NDVI).

Estimation of Water Storage in Small Agricultural Reservoir Using Sentinel-2 Satellite Imagery (Sentinel-2 위성영상을 활용한 농업용 저수지 가용수량 추정)

  • Lee, Hee-Jin;Nam, Won-Ho;Yoon, Dong-Hyun;Jang, Min-Won;Hong, Eun-Mi;Kim, Taegon;Kim, Dae-Eui
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.6
    • /
    • pp.1-9
    • /
    • 2020
  • Reservoir storage and water level information is essential for accurate drought monitoring and prediction. In particular, the agricultural drought has increased the risk of agricultural water shortages due to regional bias in reservoirs and water supply facilities, which are major water supply facilities for agricultural water. Therefore, it is important to evaluate the available water capacity of the reservoir, and it is necessary to determine the water surface area and water capacity. Remote sensing provides images of temporal water storage and level variations, and a combination of both measurement techniques can indicate a change in water volume. In areas of ungauged water volume, satellite remote sensing image acts as a powerful tool to measure changes in surface water level. The purpose of this study is to estimate of reservoir storage and level variations using satellite remote sensing image combined with hydrological statistical data and the Normalized Difference Water Index (NDWI). Water surface areas were estimated using the Sentinel-2 satellite images in Seosan, Chungcheongnam-do from 2016 to 2018. The remote sensing-based reservoir storage estimation algorithm from this study is general and transferable to applications for lakes and reservoirs. The data set can be used for improving the representation of water resources management for incorporating lakes into weather forecasting models and climate models, and hydrologic processes.

Improved Detection of Metastases by Step Sectioning and Immuno-Histochemical Staining of Axillary Sentinel Nodes in Patients with Breast Carcinoma

  • Ensani, Fereshteh;Enayati, Ladan;Rajabiani, Afsaneh;Omranipour, Ramesh;Alavi, Nasrinalsadat;Mosahebi, Sara
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5731-5734
    • /
    • 2013
  • Background: The object of this study was to examine whether a new protocol including step-sectioning and immunohistochemistry (IHC) staining of axillary sentinel nodes (SN) would lead to detection of more metastases in patients with breast cancer. Materials and Methods: Sixty-nine tumor free sentinel lymph nodes were examined. Step frozen sectioning was performed on formalin fixed SN and stained both by hematoxylin and eosin (H and E) and cytokeratin markers using IHC. Any tumoral cell in IHC stained slides were considered as a positive result. Metastases up to 0.2 mm were considered as isolated tumor cells and 0.2 up to 2 mm as micrometastasis. Results: Mean age of the patients was $48.7{\pm}12.2$ years. Step sectioning of the SN revealed 11 involved by metastasis which was statistically significant (p<0.001). Furthermore, 15 (21.7%) of the patients revealed positive results in IHC staining for pan-CK marker and this was also statistically significant (p=0.001). Ten patients had tumoral involvement in lymph nodes harvested from axillary dissection and 4 out of 15 lymph nodes with positive result for CK marker were isolated tumor cells. However, 4 of 10 patients with tumor positive lymph nodes in axillary dissection were negative for CK marker and in contrast 6 of the pan-CK positive SN were in patients with tumor-free axillary lymph nodes. Conclusions: Both IHC and step sectioning improve the detection rate of metastases. Considering the similar power of these two methods, we recommend using either IHC staining or step sectioning for better evaluation of harvested SNs.

A Study on Freeze-Thaw Conditions Analysis of Soil Using Sentinel-1 SAR and Surface State Factor (Sentinel-1 SAR와 지표상태인자를 활용한 토양의 동결 융해 상태 분석 연구)

  • Yonggwan Lee;Jeehun Chung ;Wonjin Jang ;Jinuk Kim;Seongjoon Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.609-620
    • /
    • 2023
  • In this study, we used Sentinel-1 C-band synthetic aperture radar to calculate the surface state factor (SSF) for distinguishing the frozen-thawed state of soil. The accuracy of SSF classification was analyzed through comparison with air temperature (AT), grass temperature (GT), and underground temperature (UT). For the analysis, 116 Sentinel-1B Descending nodes observed over a period of 4 years from 2017 to 2020 were established for the central region of South Korea. AT, GT, and UT data were obtained from 23 soil moisture observation points of the Rural Development Administration during the same period, and analyzed using the 06:00 am data adjacent to the shooting time of the Sentinel-1B images. The average accuracy and F1-score for all stations were 0.63 and 0.47 for AT, 0.63 and 0.48 for GT, and 0.57 and 0.21 for UT, respectively. For winter (December-February) data, the average accuracy and F1-score were 0.66 and 0.76 for AT, 0.67 and 0.76 for GT, and 0.47 and 0.44 for UT, respectively. The increase in accuracy during winter data may be attributed to the fact that errors occurring in other seasons are not included.

The Development of Major Tree Species Classification Model using Different Satellite Images and Machine Learning in Gwangneung Area (이종센서 위성영상과 머신 러닝을 활용한 광릉지역 주요 수종 분류 모델 개발)

  • Lim, Joongbin;Kim, Kyoung-Min;Kim, Myung-Kil
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_2
    • /
    • pp.1037-1052
    • /
    • 2019
  • We had developed in preceding study a classification model for the Korean pine and Larch with an accuracy of 98 percent using Hyperion and Sentinel-2 satellite images, texture information, and geometric information as the first step for tree species mapping in the inaccessible North Korea. Considering a share of major tree species in North Korea, the classification model needs to be expanded as it has a large share of Oak(29.5%), Pine (12.7%), Fir (8.2%), and as well as Larch (17.5%) and Korean pine (5.8%). In order to classify 5 major tree species, national forest type map of South Korea was used to build 11,039 training and 2,330 validation data. Sentinel-2 data was used to derive spectral information, and PlanetScope data was used to generate texture information. Geometric information was built from SRTM DEM data. As a machine learning algorithm, Random forest was used. As a result, the overall accuracy of classification was 80% with 0.80 kappa statistics. Based on the training data and the classification model constructed through this study, we will extend the application to Mt. Baekdu and North and South Goseong areas to confirm the applicability of tree species classification on the Korean Peninsula.

Flow Velocity Change of David Glacier, East Antarctica, from 2016 to 2020 Observed by Sentinel-1A SAR Offset Tracking Method

  • Moon, Jihyun;Cho, Yuri;Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • This study measures the change of ice flow velocity of David Glacier, one of the fast-moving glaciers in East Antarctica that drains through Drygalski Ice Tongue. In order to effectively observe the rapid flow velocity, we applied the offset tracking technique to Sentinel-1A SAR images obtained from 2016 to 2020 with 36-day temporal baseline. The resulting velocity maps were averaged and the two relatively fast points (A1 and A2) were selected for further time-series analysis. The flow velocity increased during the Antarctic summer (around December to March) over the four years' observation period probably due to the ice surface melting and reduced friction on the ice bottom. Bedmap2 showed that the fast flow velocities at A1 and A2 are associated with a sharp decrease in the ice surface and bottom elevation so that ice volumetric cross-section narrows down and the crevasses are being created on the ice surface. The local maxima in standard deviation of ice velocity, S1 and S2, showed random temporal fluctuation due to the rotational ice swirls causing error in offset tracking method. It is suggested that more robust offset tracking method is necessary to incorporate rotational motion.

Oil Spill Monitoring in Norilsk, Russia Using Google Earth Engine and Sentinel-2 Data (Google Earth Engine과 Sentinel-2 위성자료를 이용한 러시아 노릴스크 지역의 기름 유출 모니터링)

  • Minju Kim;Chang-Uk Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.311-323
    • /
    • 2023
  • Oil spill accidents can cause various environmental issues, so it is important to quickly assess the extent and changes in the area and location of the spilled oil. In the case of oil spill detection using satellite imagery, it is possible to detect a wide range of oil spill areas by utilizing the information collected from various sensors equipped on the satellite. Previous studies have analyzed the reflectance of oil at specific wavelengths and have developed an oil spill index using bands within the specific wavelength ranges. When analyzing multiple images before and after an oil spill for monitoring purposes, a significant amount of time and computing resources are consumed due to the large volume of data. By utilizing Google Earth Engine, which allows for the analysis of large volumes of satellite imagery through a web browser, it is possible to efficiently detect oil spills. In this study, we evaluated the applicability of four types of oil spill indices in the area of various land cover using Sentinel-2 MultiSpectral Instrument data and the cloud-based Google Earth Engine platform. We assessed the separability of oil spill areas by comparing the index values for different land covers. The results of this study demonstrated the efficient utilization of Google Earth Engine in oil spill detection research and indicated that the use of oil spill index B ((B3+B4)/B2) and oil spill index C (R: B3/B2, G: (B3+B4)/B2, B: (B6+B7)/B5) can contribute to effective oil spill monitoring in other regions with complex land covers.

Machine Learning-based Atmospheric Correction for Sentinel-2 Images Using 6SV2.1 and GK2A AOD (6SV2.1과 GK2A AOD를 이용한 기계학습 기반의 Sentinel-2 영상 대기보정)

  • Seoyeon Kim;Youjeong Youn;Jonggu Kang;Yemin Jeong;Soyeon Choi;Yungyo Im;Youngmin Seo;Chan-Won Park;Kyung-Do Lee;Sang-Il Na;Ho-Yong Ahn;Jae-Hyun Ryu;Yangwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.1061-1067
    • /
    • 2023
  • In this letter, we simulated an atmospheric correction for Sentinel-2 images, of which spectral bands are similar to Compact Advanced Satellite 500-4 (CAS500-4). Using the second simulation of the satellite signal in the solar spectrum - vector (6SV)2.1 radiation transfer model and random forest (RF), a type of machine learning, we developed an RF-based atmospheric correction model to simulate 6SV2.1. As a result, the similarity between the reflectance calculated by 6SV2.1 and the reflectance predicted by the RF model was very high.

High-Resolution Sentinel-2 Imagery Correction Using BRDF Ensemble Model (BRDF 앙상블 모델을 이용한 고해상도 Sentinel-2 영상 보정)

  • Hyun-Dong Moon;Bo-Kyeong Kim;Kyeong-Min Kim;Subin Choi;Euni Jo;Hoyong Ahn;Jae-Hyun Ryu;Sung-Won Choi;Jaeil Cho
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1427-1435
    • /
    • 2023
  • Vegetation indices based on selected wavelength reflectance measurements are used to represent crop growth and physiological conditions. However, the anisotropic properties of the crop canopy surface can govern spectral reflectance and vegetation indices. In this study, we applied an ensemble of bidirectional reflectance distribution function (BRDF) models to high-resolution Sentinel-2 satellite imagery and compared the differences between correction results before and after reflectance. In the red and near-infrared (NIR) band reflectance images, BRDF-corrected outlier values appeared in certain urban and paddy fields of farmland areas and forest shadow areas. These effects were equally observed when calculating the normalized difference vegetation index (NDVI) and 2-band enhanced vegetation index (EVI2). Furthermore, the outlier values in corrected NIR band were shown in pixels shadowed by mountain terrain. These results are expected to contribute to the development and improvement of BRDF models in high-resolution satellite images.