• 제목/요약/키워드: and RS based smart disaster systems

검색결과 2건 처리시간 0.016초

GIS, uIT, RS기반 스마트 방재시스템 구축방안 (An Establishment of the GIS, uIT, RS based Smart Disaster Systems)

  • 오종우
    • 한국재난정보학회 논문집
    • /
    • 제6권2호
    • /
    • pp.87-106
    • /
    • 2010
  • This research focused on the effect of the GIS, uIT, and RS based smart disaster systems. Ubiquitous IT strongly involved in intelligent analysis for the natural disasters. Remote sensing technologies, such as hyper-spectral imaging, MODIS, LiDAR, Radar, and optical imaging processes, can contribute many means of investigation for the natural and unnatural problems in the atmosphere, hydrosphere, and lithosphere. Recent IT trends guides abundant smart solutions, such as automatic sensing using USN, RFID, and wireless communication devices. Smart monitoring systems using intelligent LBSs will produce many ways of checking, processes, and controls for the human safeties. In results, u-smart GIS, uIT, and RS based disaster systems must be using ubiquitous IT involved smart systems using intelligent GIS methods.

BLE 환경에서 실내 위기관리를 위한 스마트 장치 기반의 재난대피 시스템 (A Disaster Evacuation System Using Smart Devices for Indoor Crisis Management in BLE Environments)

  • 장민수;정우용;임경식
    • 대한임베디드공학회논문지
    • /
    • 제10권5호
    • /
    • pp.281-296
    • /
    • 2015
  • This paper describes a novel disaster evacuation system using embedded systems such as smart devices for crisis and emergency management. In indoor environments deployed with the Bluetooth Low Energy(BLE) beacons, smart devices detect their indoor positions from beacon messages and interact with Map Server(MS) and Route Server(RS) in the Internet over the LTE and/or Wi-Fi functions. The MS and RS generate an optimal path to the nearest emergency exit based on a novel graph generation method for less route computation, called the Disaster Evacuation Graph(DEG), for each smart device. The DEG also enables efficient processing of some constraints in the computation of route, such as load balancing in situation of different capacities of paths or exits. All data interfaces among three system components, the MS, RS, smart devices, have been defined for modular implementation of our disaster evacuation system. Our experimental system has been deployed and tested in our building thoroughly and gives a good evidence that the modular design of the system and a novel approach to compute emergency route based on the DEG is competitive and viable.