• Title/Summary/Keyword: and Public Effluents

Search Result 35, Processing Time 0.024 seconds

A Grey Wolf Optimized- Stacked Ensemble Approach for Nitrate Contamination Prediction in Cauvery Delta

  • Kalaivanan K;Vellingiri J
    • Economic and Environmental Geology
    • /
    • v.57 no.3
    • /
    • pp.329-342
    • /
    • 2024
  • The exponential increase in nitrate pollution of river water poses an immediate threat to public health and the environment. This contamination is primarily due to various human activities, which include the overuse of nitrogenous fertilizers in agriculture and the discharge of nitrate-rich industrial effluents into rivers. As a result, the accurate prediction and identification of contaminated areas has become a crucial and challenging task for researchers. To solve these problems, this work leads to the prediction of nitrate contamination using machine learning approaches. This paper presents a novel approach known as Grey Wolf Optimizer (GWO) based on the Stacked Ensemble approach for predicting nitrate pollution in the Cauvery Delta region of Tamilnadu, India. The proposed method is evaluated using a Cauvery River dataset from the Tamilnadu Pollution Control Board. The proposed method shows excellent performance, achieving an accuracy of 93.31%, a precision of 93%, a sensitivity of 97.53%, a specificity of 94.28%, an F1-score of 95.23%, and an ROC score of 95%. These impressive results underline the demonstration of the proposed method in accurately predicting nitrate pollution in river water and ultimately help to make informed decisions to tackle these critical environmental problems.

Removal of Diazinon and Heavy Metals in Water by Benthic Macroinvertebrate (저서성 대형무척추동물을 이용한 수중의 다이아지논 및 중금속 제거)

  • Lee, Hwa-Sung;Ryoo, Keon-Sang
    • Journal of Environmental Science International
    • /
    • v.21 no.1
    • /
    • pp.57-67
    • /
    • 2012
  • The midge samples were undertaken at three streams, representing different surrounding environments, to investigate the contaminant exposure of midge. The content of heavy metals in midge collected in Singil stream were generally higher as a result of input to the industrial effluents with respect to other streams. Adsorption experiments were done to evaluate the possibility of removing contaminants from water with midge. Diazinon and heavy metals were contaminant target compounds in this study. The removal rate of diazinon in water by midge was 60-75%. In the case of Cu, the removal rate was reached around 90% at the lower initial concentration of 1.87 and 0.81 ppm rather than 4.25 ppm. The reduction of concentration of Cr and Cd according to the lapse of time was similar to the Cu, but their removal rates were shown 50% and 60-74%, respectively. The removal rate of Zn by midge represented relatively high level within the experimental condition. No change in concentration of Cr and As with time were occurred at all experimental conditions. It accounts for the fact that the reduction of Cr and As could not be achieved through the adsorption process, using midge.

Fates and Removals of Micropollutants in Drinking Water Treatment (정수처리 과정에서의 미량오염물질의 거동 및 제거 특성)

  • Nam, Seung-Woo;Zoh, Kyung-Duk
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.5
    • /
    • pp.391-407
    • /
    • 2013
  • Micropollutants emerge in surface water through untreated discharge from sewage and wastewater treatment plants (STPs and WWTPs). Most micropollutants resist the conventional systems in place at water treatment plants (WTPs) and survive the production of tap water. In particular, pharmaceuticals and endocrine disruptors (ECDs) are micropollutants frequently detected in drinking water. In this review, we summarized the distribution of micropollutants at WTPs and also scrutinized the effectiveness and mechanisms for their removal at each stage of drinking water production. Micropollutants demonstrated clear concentrations in the final effluents of WTPs. Although chronic exposure to micropollutants in drinking water has unclear adverse effects on humans, peer reviews have argued that continuous accumulation in water environments and inappropriate removal at WTPs has the potential to eventually affect human health. Among the available removal mechanisms for micropollutants at WTPs, coagulation alone is unlikely to eliminate the pollutants, but ionized compounds can be adsorbed to natural particles (e.g. clay and colloidal particles) and metal salts in coagulants. Hydrophobicities of micropollutants are a critical factor in adsorption removal using activated carbon. Disinfection can reduce contaminants through oxidation by disinfectants (e.g. ozone, chlorine and ultraviolet light), but unidentified toxic byproducts may result from such treatments. Overall, the persistence of micropollutants in a treatment system is based on the physico-chemical properties of chemicals and the operating conditions of the processes involved. Therefore, monitoring of WTPs and effective elimination process studies for pharmaceuticals and ECDs are required to control micropollutant contamination of drinking water.

Preliminary Studies for Efficient Treatment of Wastewater Milking Parlor in Livestock Farm (젖소 착유세정폐수의 효율적인 정화처리를 위한 기초연구)

  • Jang, Young Ho;Lee, Soo Moon;Kim, Woong Su;Kang, Jin Young
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.500-507
    • /
    • 2020
  • This study examined the wastewater at a livestock farm, and found that the dairy wastewater from the milking parlor had a lower concentration than the piggery wastewater, and that it was produced at a rate under 1.3 ㎥/day in a single farmhouse. The amount of dairy wastewater was determined based on the performance of the milking machine, the maintenance method of the milking parlor, and the amount of milk production allocated for each farmhouse, not by the area. The results confirmed that both dairy wastewater treatment processes, specifically those using Hanged Bio-Compactor (HBC) and Sequencing Batch Reactor (SBR), can fully satisfy the water quality standards of discharge. The dairy wastewater has a lower amount and concentration than piggery wastewater, meaning it is less valuable as liquid fertilizer, but it can be easily degraded using the conventional activated sludge process in a public sewage treatment plant. Therefore, discharging the dairy wastewater after individual treatment was expected to be a more reasonable method than consigning it to the centralized wastewater treatment plant. The effluent after the SBR process showed a lower degree of color than the HBC effluent, which was attributed to biological adsorption. In the case of the milking parlor in the livestock farm, the concentrations of the effluents obtained after HBC and SBR treatments both satisfied water quality standards for the discharge of public livestock wastewater treatment plants at 99% confidence intervals, and the concentrations of total nitrogen and phosphorous in untreated wastewater were even lower than the water quality standards of discharge. Therefore, we need to discuss strengthening the water quality standards to reduce environmental pollution.

Ecotoxicity Assessment of Industrial Effluent in Gyeonggi-do (경기지역 산업시설 방류수 생태독성 영향 평가)

  • Cho, Won-Sil;Kim, Sang-Hoon;Yang, Hyoung-Jae
    • Journal of Environmental Health Sciences
    • /
    • v.37 no.2
    • /
    • pp.113-123
    • /
    • 2011
  • Objectives: Industrial development in Korea results in a rapid increase in the number of chemicals, some of which may be responsible for toxicity to aquatic ecosystems. In addition, the types of hazardous chemicals included in industrial effluents have gradually increased. Therefore, chemical analysis alone is not enough to assess ecological effects of toxic chemicals in wastewater. Methods: In response to new regulations as whole effluent toxicity (WET) tests for effluent discharge of 15 publicly owned treatment works (POTWs) and 25 industrial effluent treatment plants in Gyeonggi-do, which will be effective from 2011, a necessity of studies emerges that investigates toxicity levels. Results: In case of the public treatment plants, none of them had exceeded the criteria for ecotoxicity. As for individual wastewater discharge facilities, on the other hand, two types were found to exceed the criteria: pulp and paper manufacturing facilities and pharmaceutical manufacturing facilities. For the pulp and paper manufacturing facilities, monitoring results could not help determine the exact toxicant identification. However, Daphnia magna inhibition effect or death was found to leave white plums, suggesting that suspended solids treated and the polymer used in coagulant dose. In case of pharmaceutical manufacturing facilities, the general water quality parameters cannot affect Daphia magna. However, conductivity and salinity can have an effect to be 14,000 ${\mu}s/cm$, 8.1‰ by salts, respectively. Toxicity Identification Evaluation (TIE) and Toxicity Reduction Evaluation (TRE) procedures results appeared to be effective for identifying toxic compounds in $Cl^{-}$ and $SO_4^{2-}$. Conclusions: It is necessary to develop control measures for water treatment chemicals and salts used for processes such as coagulation in individual wastewater discharge facilities in order to achieve the goal to protect aquatic ecosystems in public waters.

A Study on Coagulation and MF Membrane Process for the Reuse of Sewage Effluent (하수처리장 방류수의 응집 및 정밀여과 처리공정에 관한 연구)

  • Paik, Ke-Jin
    • Journal of environmental and Sanitary engineering
    • /
    • v.20 no.3 s.57
    • /
    • pp.36-43
    • /
    • 2005
  • Prior to the study of the sewage treatment methods, water quality for Gwangju sewage of fluent was investigated from January to December, 2004 for sewage water reuse. Monthly mean values of BOD, SS, turbidity, total phosphorus and color were 4.1 mg/L, 2.9 mg/L, 0.8 NTU, 1.3 mg/L, and 27 unit, respectively. Jar-test was performed to investigate the removal efficiency of pollutants under the coagulation conditions of fast mixing for 5 min, slow mixing for 15 min and precipitation for 1hr. Here, alum and polyaluminium chloride (PAC) were used as coagulants to reduce color, turbidity, total phosphorus (TP) and total organic carbon (TOC) in sewage effluents. The results showed that PAC gave better efficiency in removing turbidity and dissolved phosphorus than alum. It was also found from the relative molecular weight (RMW) distribution analysis that organic matter over 1,000 Dalton (Da) was easily removed by coagulation and subsequently MF treatment, while it was not effective for less than 500 Da. Based on tis result, Natural organic matter (NOM) with lower molecular weight (< 500 Da) may cause harmful disinfectant by-product (DBP) after chlorine treatment. Thus, activated carbon adsorption seems to be required for the complete removal of DBP in the hybrid system.

침지형 분리막을 사용한 오수처리

  • 최광호
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.06a
    • /
    • pp.113-133
    • /
    • 1998
  • In activated sludge process, sludge settling condition is affected by organic loading rate or operation condition, and if settling condition is getting worse, it is common that overall process fails due to wash-out of biomass causing low concentration in the aeration tank. Also activated sludge process has such several problems as requiring large area, consuming a lot of power and producing large volume of sludge. Increased public concern over health and the environment combined with a strong desire to reduce capital, operating and maintenance costs, have created a need for innovative technologies for building new high quality effluents which vail meet 21st century crkeria. MBR(Membrane Bioreactor) process consists of a biological reactor and ultrafiltration(UF) membrane system that replaces the conventional clarifier of an activated sludge process. The main operating advantages of this system are that the quality of the effluent is independent of the settleability of the mixed liquor and that the effluent is free of suspended solids in any operating condition. It is possible to eliminate clarifier and to reduce the volume of aeration tank because it can afford to accumulate high biomass concentration in the bioreactor(20, 000~30, 000mg/L), which would not be possible in a conventional activated sludge process. Therefore, this process reduces overall treatment plant area. In addition to those advantages, Longer SRT condition enables higher sludge digestion in MBR process so the sludge volume produced is 50 to 70% lower than that of conventional activated sludge process There are two kinds of MBR process according to the allocations of membrane. One is cross flow type MBR of which module is located outside of the bioreactor and mixed liquor is driven into the membrane module. The other is submerged type MBR process of which module is submerged in the bioreactor and mixed liquor is generally sucked from the lumen side. addition to that the cake layer is often removed by the uplifting flow of bubbling air. A submerged MBR process is superior to a crossflow MBR in regard to the power consumption because suction pressure of a submerged MBR is generally lower than that of a crossflow MBR which has recirculation pump. A submerged MBR, therefore, has the potential to be applied to small wastewater treatment plants that need low cost treatment systems.

  • PDF

Evaluation of Toxicity Influenced by Ion Imbalance in Wastewater (폐수에서 이온불균형문제가 생태독성에 미치는 영향 평가)

  • Shin, Kisik;Kim, Jongmin;Lee, Soohyung;Lee, Jungseo;Lee, Taekjune
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.1
    • /
    • pp.77-83
    • /
    • 2018
  • This paper aims to evaluate the results of toxicity testing with Daphnia magna and Vibrio fischeri on wastewater samples which might be influenced by ion imbalance. The effluents from factories were found to be more toxic with high salinity levels than those from public wastewater treatment plant (WTP) and sewage treatment plant (SWP). Clion composition was highest in the effluent, in terms of percentage, which was followed by $Na^+$, $SO_4^{2-}$ and $Ca^{2+}$. $K^+$ and $Mg^{2+}$ ion was relatively low. The sensitivity of D. magna test results was higher than V. fischeri. Among samples which were proved by V. fischeri testing to be nontoxic, the composition ratio of each ion whether toxic samples or nontoxic samples which were decided by D. magna toxicity testing, were compared. $Na^+$, $K^+$, $Ca^{2+}$, $Mg^{2+}$ ion composition ratio showed high level in nontoxic samples whereas $SO_4^{2-}$ and $Cl^-$ ion composition ratio was high in toxic samples. Accordingly, $SO_4^{2-}$ and $Cl^-$ ion seemed to be considered the ions causing toxicity in effluent. Toxicity from some categories of industries (Mining of non-metallic minerals, Manufacture of basic organic petrochemicals, Manufacture of other basic organic chemicals, Manufacture of other chemical products etc.) seemed to be influenced by salinity. The Ion concentration in influent and effluent were similar. Concentration of $Na^+$, $Cl^-$, $K^+$, $Ca^{2+}$ ions were high in influent, however $Mg^{2+}$ and $SO_4^{2-}$ ions were high in effluent.

Radiological Methodology for Calculating Radiation Dose from Airborne Radioactivity Released to the Environment (大氣環境에 排出된 放射能에 依한 放射線 被曝 線量 計算을 爲한 放射線學的 方法論의 考察)

  • Hwang, Sun-Tae;Hwang, Eui-Hwan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.5 no.1
    • /
    • pp.33-42
    • /
    • 1989
  • Nowadays, nuclear power production plays a principal role in the electrical energy supply. However, a nuclear power plants emit small amounts of radio-activity due to mostly fission product gases to the local environment during their normal operation. They may release considerably more radioactivity when accidents occur. It is quite necessary to be able to calculate the radiation doses to the general public from such radioactivity releases in order to evaluate the environmental impact of the normally operating nuclear power plant, to assure that this is within acceptable radiation standards, and to ascertain the radiological consequences of nuclear reactor accidents. Such computations also play an important role in determining the acceptability of a proposed nuclear reactor site. Before radiation dose calculations can be carried out, therefore, it is necessary to determine how the concentration of the radioactive effluents is distributed in the environment following their emissions into the atmosphere. This matter is considered and radiation dose calculations are mentioned in conclusions.

  • PDF

32P-postlabeling Analysis of 7H-Dibenzo [c,g] carbazole and Dibenz [a,j] acridine DNA Adduct in Mice (7H-Dibenzo [c,g] carbazole과 Dibenz[a,j] acridine에 의한 DNA adduct의 32P-postlabeling 분석)

  • Roh, JH;Moon, YH;Warshawsk, D.;Talaska, G.
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.3 no.1
    • /
    • pp.14-21
    • /
    • 1993
  • N-Heterocyclic aromatics (NHA) are widely occurring environmental pollutants formed during the pyrolysis of nitrogen-containing organic chemicals. NAH are found in significant amounts in tobacco condensates, synthetic fuels, polluted river sediment, and effluents from the heating of coal. Following topical application 7H-dibenzo[c, g]carbazole (DBC) induces cancer in liver as well as skin, indicating that dermal exposure can lead to systemic effect. DBC and dibenz[a,j]acridine (DBA) are examples of NHA. The potency of many carcinogenic compounds is related, at least in part, to the efficiency of their biological activation. We undertook studies to determine which initial metabolites lead to the formation of high levels of carcinogen-DNA adducts in vivo. DBC and DBA's, DBA, trans-DBA-1,2-dihydrodiol (DBA-1,2-DHD), trans-DBA-3,4-dihydrodiol (DBA-3,4-DHD), and trans-DBA-5,6-dihydrodiol (DBA-5,6-DHD), were applied to the skin of mice. There were six adducts that were related to DBC application. These addusts were seen in the target organ, liver at high levels, but at very low levels in non-target organs, skin, lung and kidney. In skin, DBA produced two distinct adducts. The same two adducts were seen when DBA-3,4-DHD was applied. In addition the total adduct level elicited by DBA-3,4-DHD higher than that of parent compound. Two adducts were seen when DBA-5,6-DHD was applied, but these were very different from adducts seen with DBA. These results suggested that activation of DBA to DNA-binding compounds in skin includes initial formation of DBA-3,4-DHD.

  • PDF