• Title/Summary/Keyword: and Mobility Management

Search Result 959, Processing Time 0.025 seconds

A Scenario for Enhanced Network-based Localized Mobility Management

  • Kim, Dong-Il;Kim, Kwang-Deok
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.3
    • /
    • pp.245-248
    • /
    • 2008
  • Everytime a node moves out of its area, the connection to the node encounters a handover which may cause much latency. NetLMM(Network based Localized Mobility Management) supports the mobility management for such nodes and improves handover latency using MIH(Media Independent Handover) function. In this paper, we add some messages to NetLMM procedure to improve handover latency and analyze its effects through a scenario based approach

USER MOBILITY AND CHANNEL HOLDING TIME MODELING IN MICROCELLULAR SYSTEMS

  • Kim, Sehun;Lee, Ki-Dong
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1998.10a
    • /
    • pp.186-189
    • /
    • 1998
  • In this paper, we provide a mathematical formulation to describe the random mobility of users in cellular radio systems. With this, we can also study tile cell sojourn time (CST) distribution as well as the channel holding time (CHT) distribution. The study on user mobility enables to improve the resource management in cellular radio systems. We provide a versatile analysis tool that improves the limit of simplified analyses.

  • PDF

Performance Evaluation of User Mobility Management Scheme based-on Dwell Time Optimization for Effective Inter-working with Heterogeneous Networks under Cognitive Networking Environments (인지 네트워킹 환경 하에서 체류시간 관리 최적화를 통한 사용자 이동성 모델 기반 이동성 관리방법의 성능평가)

  • Choi, Yu-Mi;Kim, Jeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.5
    • /
    • pp.77-83
    • /
    • 2012
  • The importance of mobility management is becoming to be one of the upcomming issues to be addressed to provide the converged services and the convergence of the heterogeneous network environments. In this paper, the new user mobility management scheme which can be utilized to model the user's mobility behaviors for interworking with heterogeneous overlay convergent networks under the time-varying radio propagation environment has been proposed. Thus user mobility management scheme based on user mobility model is considered in order to optimize the dwell time of users in the overlay convergent networks. This Mobile IP user mobility management will be very useful to model the user mobility behaviors and can be used to estimate the signaling traffic and frequency spectrum demands for massive data transfer for the heterogeneous overlay convergent networks.

Analytical Approach of Multicasting-based Fast Mobility Management Scheme in Proxy Mobile IPv6 Networks (프록시 모바일 IPv6 네트워크에서 멀티캐스팅기반 빠른 이동성관리 기법의 분석적 접근법)

  • Kim, Young Hoon;Jeong, Jong Pil
    • Journal of Internet Computing and Services
    • /
    • v.14 no.3
    • /
    • pp.67-79
    • /
    • 2013
  • In wireless networks, efficient mobility management to support of mobile users is very important. Several mobility management schemeshave been proposed with the aim of reducing the signaling traffic of MN(Mobile Node). Among them, PMIPv6 (Proxy Mobile IPv6) is similar with host-based mobility management protocols but MN does not require any process for mobility. By introducing new mobile agent like MAG (Mobile Access Gateway) and LMA (Local Mobility Anchor), it provides IP mobility to MN. In this paper, we propose the analytical model to evaluate the mean signalingdelay and the mean bandwidth according to the type of MN mobility. As a result of mathematical analysis, MF-PMIP (Multicasting-based FastPMIP) outperforms compared to F-PMIP and PMIP in terms of parameters for the performance evaluation.

PMIPv6-based Mobility Management Scheme for Vehicular Communication Networks (차량통신망 지원을 위한 PMIPv6 기반 이동성 관리 기법)

  • Lim, Yu-Jin;Ahn, Sang-Hyun
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.1
    • /
    • pp.66-71
    • /
    • 2010
  • This paper proposes mobility management schemes providing Internet session continuity to moving vehicles in the V2I (Vehicle-to-Infrastructure) environment of the vehicular communication networks. Since PMIPv6 is localized mobility management protocol, PMIPv6 can not be directly applied to the vehicular communication network requiring global mobility coverage. Therefore, in this paper, we derive two scenarios of applying PMIPv6 to vehicular communication network environment and propose PMIPv6-based global mobility management schemes for those scenarios. Through simulations, we show that the proposed schemes can significantly decrease the Internet service discontinuity.

Analytical Approach of Multicasting-supported Inter-Domain Mobility Management in Sensor-based Fast Proxy Mobile IPv6 Networks

  • Jang, Ha-Na;Jeong, Jong-Pil
    • International journal of advanced smart convergence
    • /
    • v.1 no.2
    • /
    • pp.1-11
    • /
    • 2012
  • IP-based Wireless Sensor Networks (IP-WSNs) are gaining importance for their broad range of applications in health care, home automation, environmental monitoring, industrial control, vehicle telematics, and agricultural monitoring. In all these applications, a fundamental issue is the mobility in the sensor network, particularly with regards to energy efficiency. Because of the energy inefficiency of network-based mobility management protocols, they can be supported via IP-WSNs. In this paper, we propose a network-based mobility-supported IP-WSN protocol called mSFP, or the mSFP: "Multicasting-supported Inter-Domain Mobility Management Scheme in Sensor-based Fast Proxy Mobile IPv6 Networks". Based on [8,20], we present its network architecture and evaluate its performance by considering the signaling and mobility cost. Our analysis shows that the proposed scheme reduces the signaling cost, total cost, and mobility cost. With respect to the number of IP-WSN nodes, the proposed scheme reduces the signaling cost by 7% and the total cost by 3%. With respect to the number of hops, the proposed scheme reduces the signaling cost by 6.9%, the total cost by 2.5%, and the mobility cost by 1.5%. With respect to the number of IP-WSN nodes, the proposed scheme reduces the mobility cost by 1.6%.

Optimal Mobility Management of PCNs Using Two Types of Cell Residence Time (이동 통신망에 있어서 새로운 셀 체류시간 모형화에 따른 최적 이동성 관리)

  • 홍정식;장인갑;이창훈
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.27 no.3
    • /
    • pp.59-74
    • /
    • 2002
  • This study investigates two basic operations of mobility management of PCNs (Personal Communication Networks), i.e., the location update and the paging of the mobile terminal. From the realistic consideration that a user either moves through several cells consecutively or stays in a cell with long time, we model the mobility pattern by introducing two types of CRT (Cell Residence Time). Mobility patterns of the mobile terminal are classified Into various ways by using the ratios of two types of CRT. Cost analysis is performed for distance-based and movement-based location update schemes combined with blanket polling paging and selective paging scheme. It is demonstrated that in a certain condition of mobility pattern and call arrival pattern, 2-state CRT model produces different optimal threshold and so, is more effective than IID ( Independently-Identically-Distributed) CRT model. An analytical model for the new CRT model is compact and easily extendable to the other location update schemes.

QoE-Aware Mobility Management Scheme

  • Kim, Moon
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.3
    • /
    • pp.137-146
    • /
    • 2016
  • In this paper, we introduce a quality of experience (QoE)-provisioning mobility management scheme. The emphasis is on a mobility-aware QoE solution enabling network components to recognize the mobility pattern of an end-user and to prepare a handover in advance. We further focus on an energy-adaptive QoE solution based on the energy profile providing the preferred pattern of energy consumption and an energy preference check engine determining whether the provision of the service that the end-user requested is suitable to QoE or not. Lastly, we concentrate on a network-based intelligent mobility management scheme adopting the calm service and the balance. Consequently, we conclude that the proposed schemes improve the handover latency, QoE metrics, and energy efficiency simultaneously.

Mobility Management in Multi-Radio Multi-Channel Wireless Mesh Networks

  • Que, Ma. Victoria;Hwang, Won-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.3A
    • /
    • pp.304-310
    • /
    • 2008
  • In a wireless mesh network, there are two types of nodes: mesh routers and mesh clients. These two contradistinct network entities will be characterized and modeled depending on their role in the network. Mesh routers are essentially not mobile unlike the mesh clients. The differences on these nodes should be noted in any protocol design. In this paper, we present a mobility management for wireless mesh network (WMN). This mobility management handles movement of wireless mesh clients as it leaves from a coverage area of a wireless mesh router to another. We consider signaling overhead and mobility as performance metrics.

Analysis of a NEMO enabled PMIPv6 based Mobility Support for an Efficient Information Transmission

  • Caytiles, Ronnie D.;Park, Byungjoo
    • International journal of advanced smart convergence
    • /
    • v.7 no.4
    • /
    • pp.197-205
    • /
    • 2018
  • Nowadays, wireless sensor networks (WSNs) have been widely adopted in structural health monitoring (SHM) systems for social overhead capital (SOC) public infrastructures. Structural health information, environmental disturbances and sudden changes of weather conditions, damage detections, and external load quantizing are among the capabilities required of SHM systems. These information requires an efficient transmission with which an efficient mobility management support for wireless networks can provide. This paper deals with the analysis of mobility management schemes in order to address the real-time requirement of data traffic delivery for critical SHM information. The host-based and network-based mobility management protocols have been identified and the advantages of network mobility (NEMO) enabled Proxy Mobile Internet Protocol version 6 (PMIPv6) have been leveraged in order to address the SHM information transmission needs. The scheme allows an efficient information transmission as it improves the handover performance due to shortened handover latency as well as reduced signaling overhead.