• Title/Summary/Keyword: analytical solutions

Search Result 1,303, Processing Time 0.03 seconds

Electromagnetic Analysis and Control Parameter Estimation of Moving-Coil LOA Using Transfer Relations (전자기적 전달관계를 이용한 가동코일형 LOA의 전자기적 특성해석 및 제어정수 도출)

  • Jang, Seok-Myeong;Choi, Jang-Young;Cho, Han-Wook;Park, Ji-Hoon;Jeong, Sang-Sub
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.129-131
    • /
    • 2005
  • This paper deals with an electromagnetic analysis and control parameter estimation of a moving-coil linear oscillatory actuator (MCLOA). Analytical solutions for electromagnetic characteristics of the MCLOA are obtained from transfer relations derived in terms of a magnetic vector potential and two-dimensional (2-d) rectangular coordinate systems. And then, on the basis of 2-d analytical solutions, control parameters such as the thrust constant, the back-emf constant and winding inductances are estimated. Finally, analytical results for both electromagnetic characteristics and control parameters of the MCLOA are validated extensively by finite element (FE) analyses. In particular, test results such as static thrust, resistance and inductance measurements are given to confirm the analyses.

  • PDF

Analytical solutions to magneto-electro-elastic beams

  • Jiang, Aimin;Ding, Haojiang
    • Structural Engineering and Mechanics
    • /
    • v.18 no.2
    • /
    • pp.195-209
    • /
    • 2004
  • By means of the two-dimensional basic equations of transversely isotropic magneto-electro-elastic media and the strict differential operator theorem, the general solution in the case of distinct eigenvalues is derived, in which all mechanical, electric and magnetic quantities are expressed in four harmonic displacement functions. Based on this general solution in the case of distinct eigenvalues, a series of problems is solved by the trial-and-error method, including magneto-electro-elastic rectangular beam under uniform tension, electric displacement and magnetic induction, pure shearing and pure bending, cantilever beam with point force, point charge or point current at free end, and cantilever beam subjected to uniformly distributed loads. Analytical solutions to various problems are obtained.

Simulate of edge and an internal crack problem and estimation of stress intensity factor through finite element method

  • Yaylaci, Murat
    • Advances in nano research
    • /
    • v.12 no.4
    • /
    • pp.405-414
    • /
    • 2022
  • In this study, the elastic plane problem of a layered composite containing an internal or edge crack perpendicular to its boundaries in its lower layer is examined using numerical analysis. The layered composite consists of two elastic layers having different elastic constants and heights. Two bonded layers rest on a homogeneous elastic half plane and are pressed by a rigid cylindrical stamp. In this context, the Finite Element Method (FEM) based software called ANSYS is used for numerical solutions. The problem is solved under the assumptions that the contacts are frictionless, and the effect of gravity force is neglected. A comparison is made with analytical results in the literature to verify the model created and the results obtained. It was found that the results obtained from analytical formulation were in perfect agreements with the FEM study. The numerical results for the stress-intensity factor (SIF) are obtained for various dimensionless quantities related to the geometric and material parameters. Consequently, the effects of these parameters on the stress-intensity factor are discussed. If the FEM analysis is used correctly, it can be an efficient alternative method to the analytical solutions that need time.

Analysis and Control Parameter Estimation of a Tubular Linear Motor with Halbach and Radial Magnet Array

  • Jang Seok-Myeong;Choi Jang-Young;Cho Han-Wook;Lee Sung-Ho
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.2
    • /
    • pp.154-161
    • /
    • 2005
  • In the machine tool industry, direct drive linear motor technology is an interesting means to achieve high acceleration, and to increase reliability. This paper analyzes and compares the characteristics of a tubular linear motor with Halbach and radial magnet array, respectively. First, the governing equations are established analytically in terms of the magnetic vector potential and two dimensional cylindrical coordinate systems. Then, we derive magnetic field solutions due to the PMs and the currents. Motor thrust, flux linkage and back emf are also derived. The results are shown to be in good conformity with those obtained from the commonly used finite element method. Finally, control parameters are obtained from analytical solutions.

The Homotopy Perturbation Method for free vibration analysis of beam on elastic foundation

  • Ozturk, Baki;Coskun, Safa Bozkurt
    • Structural Engineering and Mechanics
    • /
    • v.37 no.4
    • /
    • pp.415-425
    • /
    • 2011
  • In this study, the homotopy perturbation method (HPM) is applied to free vibration analysis of beam on elastic foundation. This numerical method is applied on three different axially loaded cases, namely: 1) one end fixed, the other end simply supported; 2) both ends fixed and 3) both ends simply supported cases. Analytical solutions and frequency factors are evaluated for different ratios of axial load N acting on the beam to Euler buckling load, $N_r$. The application of HPM for the particular problem in this study gives results which are in excellent agreement with both analytical solutions and the variational iteration method (VIM) solutions for all the cases considered in this study and the differential transform method (DTM) results available in the literature for the fixed-pinned case.

Analytical Solutions for Wave deformation Due to Semi-Infinite Breakwaters (반무한방파제에 의한 파랑변형 해석해)

  • Seo, Seung-Nam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.3
    • /
    • pp.156-164
    • /
    • 1999
  • Two analytical solutions for wave diffraction by a semi-infinite breakwater, which Penney and Price (1952), and Stoker (1957) presented, are rederived. Since in previous works the derivations were skipped or briefly given, in the paper the derivation is brought into focus. Numerical computations of the solutions are presented and solution behavior of Stoker's method due to a number of terms in the series is analyzed.

  • PDF

Analytical modeling of bending and free vibration of thick advanced composite beams resting on Winkler-Pasternak elastic foundation

  • Chami, Khaldoune;Messafer, Tahar;Hadji, Lazreg
    • Earthquakes and Structures
    • /
    • v.19 no.2
    • /
    • pp.91-101
    • /
    • 2020
  • This work presents an efficient and original hyperbolic shear deformation theory for the bending and dynamic behavior of functionally graded (FG) beams resting on Winkler - Pasternak foundations. The theory accounts for hyperbolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. Based on the present theory, the equations of motion are derived from Hamilton's principle. Navier type analytical solutions are obtained for the bending and vibration problems. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions. It can be concluded that the present theory is not only accurate but also simple in predicting the bending and vibration behavior of functionally graded beams.

A Solution Procedure Based on Analytical Solutions for Laplace's Equation on Convex Polygons (해석해를 이용한 단순볼록 다각형에서의 라프라스방정식의 해법)

  • 김윤영;윤민수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.11
    • /
    • pp.2773-2781
    • /
    • 1993
  • Laplace's equation is, perhaps, the most important equation, which governs various kinds of physical phenomena. Due to its importance, there have been several numerical techniques such as the finite element method, the finite difference method, and the boundary element method. However, these techniques do not appear very effective as they require a substantial amount of numerical calculation. In this paper, we develop a new most efficient technique based on analytic solutions for Laplace's equation in some convex polygons. Although a similar approach was used for the same problem, the present technique is unique as it solves directly Laplace's equation with the utilization of analytical solutions.

A semi-analytical FE method for the 3D bending analysis of nonhomogeneous orthotropic toroidal shells

  • Wu, Chih-Ping;Li, En
    • Steel and Composite Structures
    • /
    • v.39 no.3
    • /
    • pp.291-306
    • /
    • 2021
  • Based on Reissner's mixed variational theorem (RMVT), the authors develop a semi-analytical finite element (FE) method for a three-dimensional (3D) bending analysis of nonhomogeneous orthotropic, complete and incomplete toroidal shells subjected to uniformly-distributed loads. In this formulation, the toroidal shell is divided into several finite annular prisms (FAPs) with quadrilateral cross-sections, where trigonometric functions and serendipity polynomials are used to interpolate the circumferential direction and meridian-radial surface variations in the primary field variables of each individual prism, respectively. The material properties of the toroidal shell are considered to be nonhomogeneous orthotropic over the meridianradial surface, such that homogeneous isotropic toroidal shells, laminated cross-ply toroidal shells, and single- and bi-directional functionally graded toroidal shells can be included as special cases in this work. Implementation of the current FAP methods shows that their solutions converge rapidly, and the convergent FAP solutions closely agree with the 3D elasticity solutions available in the literature.

Dynamic response of pipe pile embedded in layered visco-elastic media with radial inhomogeneity under vertical excitation

  • Cui, Chun Y.;Meng, Kun;Wu, Ya J.;Chapman, David;Liang, Zhi M.
    • Geomechanics and Engineering
    • /
    • v.16 no.6
    • /
    • pp.609-618
    • /
    • 2018
  • A new mechanical model for predicting the vibration of a pipe pile embedded in longitudinally layered visco-elastic media with radial inhomogeneity is proposed by extending Novak's plain-strain model and complex stiffness method to consider viscous-type damping. The analytical solutions for the dynamic impedance, the velocity admittance and the reflected signal of wave velocity at the pile head are also derived and subsequently verified by comparison with existing solutions. An extensive parametric analysis is further performed to examine the effects of shear modulus, viscous damping coefficient, coefficient of disturbance degree, weakening or strengthening range of surrounding soil and longitudinal soft or hard interbedded layer on the velocity admittance and the reflected signal of wave velocity at the pile head. It is demonstrated that the proposed model and the obtained solutions provide extensive possibilities for practical application compared with previous related studies.