• 제목/요약/키워드: analytical model

Search Result 5,089, Processing Time 0.045 seconds

A Fundamental Study on Evaluation of Web Crippling Strength of Corroded H-Beams (부식 H형 강재의 복부좌굴강도 추정에 관한 기초적 연구)

  • Kim, In-Tae;Shin, Chang-Hee;Cheung, Ji-Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.5
    • /
    • pp.421-433
    • /
    • 2010
  • The most typical deterioration of steel structures is corrosion damage. However, a method to evaluate residual load-carrying capacity of corroded steel structures is not yet established. It is difficult to check current serviceability and safety of the structures. In this study, compressive tests and finite element analyses were conducted on H-beams with corroded web. Then, the effect of corrosion damage on web crippling strength and evaluation methods of the web crippling strength are studied. Based on the tests, 4 H-beam specimens used in a subway construction site and 9 H-beam specimens with different web-thickness and damaged-height underwent compression-tests. To consider loading and supporting areas in the site, compressive loading was applied in the entire region of the upper and bottom flange in 5 H-beam specimens and applied partially on the regions of the upper and bottom flange in 8 specimens. The finite element analysis of 38 parametric model specimens simulating different corrosion damages was also carried out. From experimental and analytical results, the relationships between corrosion damages in the web and residual web crippling strength are presented. Factors web crippling strength was reduced are formulated by using residual average thickness and the standard deviation of the corroded web thickness. Also, a simple evaluation method of residual web crippling strength was proposed.

A demonstration of the H3 trimethylation ChIP-seq analysis of galline follicular mesenchymal cells and male germ cells

  • Chokeshaiusaha, Kaj;Puthier, Denis;Nguyen, Catherine;Sananmuang, Thanida
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.6
    • /
    • pp.791-797
    • /
    • 2018
  • Objective: Trimethylation of histone 3 (H3) at 4th lysine N-termini (H3K4me3) in gene promoter region was the universal marker of active genes specific to cell lineage. On the contrary, coexistence of trimethylation at 27th lysine (H3K27me3) in the same loci-the bivalent H3K4m3/H3K27me3 was known to suspend the gene transcription in germ cells, and could also be inherited to the developed stem cell. In galline species, throughout example of H3K4m3 and H3K27me3 ChIP-seq analysis was still not provided. We therefore designed and demonstrated such procedures using ChIP-seq and mRNA-seq data of chicken follicular mesenchymal cells and male germ cells. Methods: Analytical workflow was designed and provided in this study. ChIP-seq and RNA-seq datasets of follicular mesenchymal cells and male germ cells were acquired and properly preprocessed. Peak calling by Model-based analysis of ChIP-seq 2 was performed to identify H3K4m3 or H3K27me3 enriched regions ($Fold-change{\geq}2$, $FDR{\leq}0.01$) in gene promoter regions. Integrative genomics viewer was utilized for cellular retinoic acid binding protein 1 (CRABP1), growth differentiation factor 10 (GDF10), and gremlin 1 (GREM1) gene explorations. Results: The acquired results indicated that follicular mesenchymal cells and germ cells shared several unique gene promoter regions enriched with H3K4me3 (5,704 peaks) and also unique regions of bivalent H3K4m3/H3K27me3 shared between all cell types and germ cells (1,909 peaks). Subsequent observation of follicular mesenchyme-specific genes-CRABP1, GDF10, and GREM1 correctly revealed vigorous transcriptions of these genes in follicular mesenchymal cells. As expected, bivalent H3K4m3/H3K27me3 pattern was manifested in gene promoter regions of germ cells, and thus suspended their transcriptions. Conclusion: According the results, an example of chicken H3K4m3/H3K27me3 ChIP-seq data analysis was successfully demonstrated in this study. Hopefully, the provided methodology should hereby be useful for galline ChIP-seq data analysis in the future.

Analysis of Preservice Chemistry Teachers' Modelling Ability and Perceptions in Science Writing for Audiences of General Chemistry Experiment Using Argument-based Modeling Strategy (논의-기반 모델링 전략을 이용한 일반화학실험에서 글쓰기 대상에 따른 예비화학교사들의 모델링 능력 및 모델링에 대한 인식 분석)

  • Cho, Hye Sook;Kim, HanYoung;Kang, Eugene;Nam, Jeonghee
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.6
    • /
    • pp.459-472
    • /
    • 2019
  • The purpose of this study was to investigate the effect of science writing for different audiences on preservice chemistry teachers' chemistry concept understanding and modeling ability in general chemistry experiment activities using Argument-based Modeling (AbM) strategy. And we also examined preservice chemistry teachers' perceptions of modeling in different audience groups. The participants of the study were 18 university students in the first grade of preservice chemistry teachers taking a general chemistry experiment course. They completed eleven topics of general chemistry experiment using argument-based modeling strategy. The understanding of chemistry concept was compared with the effect size of pre- and post-chemistry concept test scores. To find out modeling ability, we analyzed level of model by each preservice chemistry teacher. Analytical framework for the modeling ability was composed of three elements, explanation, representation, and communication. The questionnaire was conducted to check up on preservice chemistry teacher's recognition of modeling. The result of analyzing the effect of modeling for different audience on the understanding of chemistry concept and modeling ability, the preservice chemistry teachers' were found to be more effective when the level of audience was low. There was no difference in the recognition of modeling between the groups for audience. However, we could confirm that the responses of preservice chemistry teachers are changed in concrete when they have an experience in succession on modeling.

Bending Moment Calculation Method and Optimum Element Size for Finite Element Analysis with Continuum Elements (연속체 요소를 사용한 유한요소해석의 휨 모멘트 계산 방법 및 최적의 요소 크기)

  • Heo, Ji-Hye;Kim, Han-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.1
    • /
    • pp.9-16
    • /
    • 2018
  • When designing a reinforced concrete member using nonlinear finite element analysis results, the bending moment at the critical section should be calculated. In this paper, a bending moment calculation method using the results of reinforced concrete finite element analysis(FEA) using continuum elements is presented and the optimum element size according to the order of the displacement function of the finite element is proposed. The bending moments calculated by integrating the stresses from the FEA are compared with the bending moments calculated using the static equilibrium conditions. In the method of integrating the stress, both the stress due to the reinforcing bar and the stress of the concrete are considered. In addition, various factors affecting the accuracy of the stresses calculated by the FEA were analyzed and the influence of the displacement function and the element size was verified. If the purpose of the analysis is to roughly observe the behavior of the members, it is appropriate to use the first order displacement function and the element size should be about 25% of the section height of the analytical model. When the bending moment of a member with high accuracy is required, it is suggested that the secondary displacement function be used and the element size be 12.5%.

Performance Evaluation of Floor Vibration of Biaxial Hollow Slab Subjected to Walking Load (보행하중에 대한 2방향 중공슬래브의 진동성능 평가)

  • Kim, Min-Gyun;Park, Hyun-Jae;Lee, Dong-Guen;Hwang, Hyun-Sik;Kim, Hyun-Su
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.5
    • /
    • pp.11-21
    • /
    • 2009
  • Considering that the weight of a biaxial hollow slab system is not increased with an incremental increase in its thickness, and that the flexural stiffness of a biaxial hollow slab is not significantly lower than that of a general solid slab, there has been a growing need for biaxial hollow slab systems, because long span structures are in great demand. In a long span structure, the problem of vibration of floor slabs frequently occurs, and the dynamic characteristics of a biaxial hollow slab system are quite different from the conventional floor systems. Therefore, in this study, the floor vibration of a biaxial hollow slab system subjected to walking load is investigated in comparison with a conventional floor slab system. For the efficiency of time history analysis, an equivalent plate slab model that can precisely represent the dynamic behavior of a biaxial hollow slab system is used. From the analytical results, it was determined that vibration of a biaxial hollow slab system subjected to walking load is evaluated as "office-level vibration," according to the classifications of the architectural institute of Japan and ANSI.

An Enhanced Fast Handover Scheme for Proxy Mobile IPv6 (Proxy Mobile IPv6를 위한 개선된 신속한 핸드오버 방안)

  • Kang, Ju-Eun;Kum, Dong-Won;Cho, You-Ze
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.6
    • /
    • pp.1-10
    • /
    • 2009
  • In a network-based approach such as Proxy Mobile IPv6 (PMIPv6), the serving network controls the mobility management on behalf of a Mobile Node (MN), thereby eliminating a MN from any mobility-related signaling. Although PMIPv6 is being standardized by the IETF NetLMM WG, PMIPv6 still suffers from a lengthy handover latency and the on-the-fly packet loss during a handover. Therefore, this paper presents an enhanced fast handover scheme for PMIPv6. The proposed handover scheme uses the Neighbor Discovery message of IPv6 to reduce the handover latency and packet buffering at the Mobile Access Gateway (MAG) to avoid the on-the-fly packet loss during a handover. In addition, it uses an additional packet buffering at the Local Mobility Anchor (LMA) to solve the packet ordering problem. We evaluate the performance of the proposed handover scheme using both analytical model and simulation. The numerical analysis shows that the proposed scheme has a relatively shorter handover latency. Simulation results demonstrate that the proposed scheme could avoid the on-the-fly packet loss and ensure the packet sequence.

A Study on Land Acquisition Priority for Establishing Riparian Buffer Zones in Korea (수변녹지 조성을 위한 토지매수 우선순위 산정 방안 연구)

  • Hong, Jin-Pyo;Lee, Jae-Won;Choi, Ok-Hyun;Son, Ju-Dong;Cho, Dong-Gil;Ahn, Tong-Mahn
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.4
    • /
    • pp.29-41
    • /
    • 2014
  • The Korean government has purchased land properties alongside any significant water bodies before setting up the buffers to secure water qualities. Since the annual budgets are limited, however, there has always been the issue of which land parcels ought to be given the priority. Therefore, this study aims to develop efficient mechanism for land acquisition priorities in stream corridors that would ultimately be vegetated for riparian buffer zones. The criteria of land acquisition priority were driven through literary review along with experts' advice. The relative weights of their value and priorities for each criterion were computed using the Analytical Hierarchy Process(AHP) method. Major findings of the study are as follows: 1. The decision-making structural model for land acquisition priority focuses mainly on the reduction of non-point source pollutants(NSPs). This fact is highly associated with natural and physical conditions and land use types of surrounding areas. The criteria were classified into two categories-NSPs runoff areas and potential NSPs runoff areas. 2. Land acquisition priority weights derived for NSPs runoff areas and potential NSPs runoff areas were 0.862 and 0.138, respectively. This implicates that much higher priority should be given to the land parcels with NSPs runoff areas. 3. Weights and priorities of sub-criteria suggested from this study include: proximity to the streams(0.460), land cover(0.189), soil permeability(0.117), topographical slope(0.096), proximity to the roads(0.058), land-use types(0.036), visibility to the streams(0.032), and the land price(0.012). This order of importance suggests, as one can expect, that it is better to purchase land parcels that are adjacent to the streams. 4. A standard scoring system including the criteria and weights for land acquisition priority was developed which would likely to allow expedited decision making and easy quantification for priority evaluation due to the utilization of measurable spatial data. Further studies focusing on both point and non-point pollutants and GIS-based spatial analysis and mapping of land acquisition priority are needed.

Effects of the Excitation Level on the Dynamic Characteristics of Electrical Cabinets of Nuclear Power Plants (진동수준이 원자력발전소 전기 캐비닛의 동특성에 미치는 영향)

  • Cho, Sung-Gook;Kim, Doo-Kie;Go, Sung-Hyuk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.23-30
    • /
    • 2010
  • Seismic qualification (SQ) is required prior to the installation of safety related electrical cabinets in nuclear power plants (NPPs). Modal identification of the electrical equipment is one of the most significant steps to perform SQ, and is an essential process to construct a realistic analytical model. In this study, shaking table tests were conducted to identify a variation of the dynamic characteristics of a seismic monitoring system cabinet installed in NPPs according to the excitation level. Modal identification of the cabinet has been performed by a frequency domain decomposition method. The results of this study show that the dynamic properties of the cabinet are nonlinearly varied according to the excitation level and the specimen behaves significantly in a nonlinear manner under safe shutdown earthquake motion in Korea. The main sources of the nonlinear behavior of the specimen have been judged by friction forces and geometrical nonlinearity rather than material nonlinearity. The nonlinear variation of the dynamic characteristics of the electrical cabinet might be accepted as an important fact that should be considered during the SQ of safety related equipment.

GPS receiver and orbit determination system on-board VSOP satellite

  • Nishimura, Toshimitsu;Harigae, Masatoshi;Maeda, Hiroaki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1649-1654
    • /
    • 1991
  • In 1995 the VSOP satellite, which is called MUSES-B in Japan, will be launched under the VLBI Space Observatory Programme(VSOP) promoted by ISAS(Institute of Space and Astronautical Science) of Japan. We are now developing the GPS Receiver(GPSR) and On-board Orbit Determination System. This paper describes the GPS(Global Positioning System), VSOP, GPSR(GPS Receiver system) configuration and the results of the GPS system analysis. The GPSR consists of three GPS antennas and 5 channel receiver package. In the receiver package, there are two 16 bits microprocessing units. The power consumption is 25 Watts in average and the weight is 8.5 kg. Three GPS antennas on board enable GPSR to receive GPS signals from any NAVSTARs(GPS satellites) which are visible. NAVSATR's visibility is described as follows. The VSOP satellite flies from 1, 000 km to 20, 000 km in height on the elliptical orbit around the earth. On the other hand, the orbit of NAVSTARs are nearly circular and about 20, 000 km in height. GPSR can't receive the GPS signals near the apogee, because NAVSTARs transmit the GPS signals through the NAVSTAR's narrow beam antennas directed toward the earth. However near the perigee, GPSR can receive from 12 to 15 GPS signals. More than 4 GPS signals can be received for 40 minutes, which are related to GDOP(Geometric Dillusion Of Precision of selected NAVSTARs). Because there are a lot of visible NAVSTARs, GDOP is small near the perigee. This is a favorqble condition for GPSR. Orbit determination system onboard VSOP satellite consists of a Kalman filter and a precise orbit propagator. Near the perigee, the Kalman filter can eliminate the orbit propagation error using the observed data by GPSR. Except a perigee, precise onboard orbit propagator propagates the orbit, taking into account accelerations such as gravities of the earth, the sun, the moon, and other acceleration caused by the solar pressure. But there remain some amount of calculation and integration errors. When VSOP satellite returns to the perigee, the Kalman filter eliminates the error of the orbit determined by the propagator. After the error is eliminated, VSOP satellite flies out towards an apogee again. The analysis of the orbit determination is performed by the covariance analysis method. Number of the states of the onboard filter is 8. As for a true model, we assume that it is based on the actual error dynamics that include the Selective Availability of GPS called 'SA', having 17 states. Analytical results for position and velocity are tabulated and illustrated, in the sequel. These show that the position and the velocity error are about 40 m and 0.008 m/sec at the perigee, and are about 110 m and 0.012 m/sec at the apogee, respectively.

  • PDF

Flexural Behavior of Dual Concrete Beams Using Fiber Reinforced Concrete at Tensile Parts (섬유보강 고인장강도 콘크리트를 이용한 이중 콘크리트 보의 휨 거동 해석)

  • 박대효;부준성;조백순
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.584-592
    • /
    • 2001
  • The cracks are developed in reinforced concrete(RC) beams at the early stage of service load because of the relatively small tensile strength of concrete. The structural strength and stiffness are decreased by reduction of tensile resistance capacity of concrete due to the developed cracks. Using the fiber reinforced concrete that is increased the flexural strength and tensile strength at tensile part can enhance the strength and stiffness of concrete structures and decrease the tensile flexural cracks and deflections. Therefore, the RC beams used of the fiber reinforced concrete at. tensile part ensure the safety and serviceability of the concrete structures. In this work, analytical model of a dual concrete beams composed of the normal strength concrete at compression part and the high tension strength concrete at tensile part is developed by using the equilibrium conditions of forces and compatibility conditions of strains. Three groups of test beams that are formed of one reinforced concrete beam and two dual concrete beams for each steel reinforcement ratio are tested to examine the flexural behavior of dual concrete beams. The comparative study of total nine test beams is shown that the ultimate load of a dual concrete beams relative to the RC beams is increased in approximately 30%. In addition, the flexural rigidity, as used here, referred to the slope of load-deflection curves is increased and the deflection is decreased.