• Title/Summary/Keyword: analytical methodology

Search Result 564, Processing Time 0.028 seconds

Research for the Analytical Method of Various Pesticides in Raw Milk by Gas Chromatography-Mass Spectrometry (GC/MSD를 사용한 원유 내 잔류농약의 분석법 연구)

  • Oh, N.S.;Shin, Y.K.;Baick, S.C.
    • Food Science of Animal Resources
    • /
    • v.29 no.4
    • /
    • pp.482-486
    • /
    • 2009
  • The aim of this study was to optimize a simple, fast, and economical analysis procedure for the determination of 16 different pesticides in raw milk via GC/MSD. Analyses were performed via gas chromatography with electron impact mass spectrometric detection in the selected ion monitoring mode (GC/MSD-SIM) using Pentachloronitrobenzene as the internal standard. The modified sample preparation methodology was based on the Pesticide Analytical Manual (PAM) of the FDA concerning fat extraction, ACN-ether partitioning, and clean-up of the Sep-Pak florisil cartridge. The modified methodology for the determination of the 16 pesticides was validated. The range of LOQs of the 16 pesticides was likely three times lower than their Maximum Residence Levels (MRLs). The recoveries of most of the pesticides were acceptable at the fortification levels of 0.5 and 1.0 ${\mu}g/mL$ and their RSD (%) level was less than 20%. None of the 16 pesticides were detected in the selected raw milk samples.

Quantitative Analysis of Microencapsulation of $\beta$-Galactosidase (유당분해효소의 미세캡슐화 수율 측정)

  • Shin, Myung Gon;Chang, Pahn Shick;Min, Bong Kee;Kwak, Hae Soo
    • Analytical Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.471-475
    • /
    • 1992
  • We have developed the methodology for the quantitative analysis of microencapsulation yield and optimized the conditions for the microencapsulation of ${\beta}$-galactosidase by butter oil. The degree of ${\beta}$-galactosidase deactivation by the microencapsulation process was the value of 5.2% of initial activity. And the yield for the microencapsulation of ${\beta}$-galactosidase by the indirect, heat treatment, and enzymatic methodology were 92.6%, 88.6%, and 94.1%, respectively.

  • PDF

Analytical Methodology and Design Consideration of Advanced Test Structure for the Micromechanical Characteristics of MEMS device (초소형 박막구조물의 기계적 특성 평가소자 설계 및 분석 기법)

  • Lee, Se-Ho;Park, Byung-Woo;kwon, Dong-Il
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.1010-1013
    • /
    • 1998
  • In micromechanical system (MEMS) such as microactuators. thin film has been widely used as structural material. MEMS materials have difference with bulk in terms of mechanical properties. So, we design the advanced test structure for micromechanical properties of MEMS. The designed structure includes the newly developed pre-crack and it is driven by electrostatic force. To measure the fracture toughness, the pre-crack formation in the test structure is developed with conventional etching process. The advanced test structure is fabricated by application of semiconductor technology. After this, we propose analytical methodology to evaluate the fracture toughness and fatigue properties through a prediction of crack behavior from the variations of stiffness and frequency. Additionally, life time of a mirror plane used in DVD(Digital Video Disk) is measured as a function of capacitance and applied voltage under the accelerated conditions. Ultimately, we propose the method to evaluate the micromechanical reliabilities of the MEMS materials using the advanced test structure.

  • PDF

(Study of Hybrid Defense Simulation Model for Wartime Stockpile Requirement of K-9 Artillery Munition Against Armored Vehicle) (K-9 포탄 전시 소요량 산정을 위한 하이브리드 국방 시뮬레이션 모형에 관한 연구)

  • Cho, Hong-Yong;Chung, Byeong-Hee
    • Journal of the military operations research society of Korea
    • /
    • v.35 no.1
    • /
    • pp.1-19
    • /
    • 2009
  • This study aims to improve methodology for a Defense Simulation which is to calculate wartime stockpile requirement of artillery munitions for K-9 against armored vehicles. Due to incorrect data input and distortion in simulation logic, the expected occupancy ratio for each weapon system obtained from applying a traditional method using an analytical Defense Simulation shows considerable discrepancies from what we expect from a war in the future. This study analyzes causes for incorrect data input and phenomena of distortion in simulation logic. By taking measures to control these phenomena, the study aims to present trustworthy methodology for a Hybrid Defense Simulation which is to calculate wartime stockpile requirement of munitions for ground forces by interaction between a controlled training Defense Simulation model and a analytical Defense Simulation model

Experimental Study of Steel Transmission Tower using Partially Scaled Model (송전철탑 부분축소모형의 실험적 연구)

  • Kim, Jong-Min;Kim, Seung-Jun;Park, Jong-Sup;Kang, Young-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.335-344
    • /
    • 2010
  • This paper presents both of an investigation on the ultimate responses and a verification study on the structural methodology using beam-truss element of steel transmission towers using experimental study. The partially scaled tower which verified with analytical model was fabricated and the horizontal load was applied up to failure in the laboratory. The structural methodology for finite element analyses was verified against experimental results and both the ultimate load capacity and collapse mechanism were shown in the test to give sufficiently accurate results with those of analytical study. It was shown as well that the ultimate failure is primarily attributed to instability of the main posts in the leg parts.

Improvement of the behaviour of composite slabs: A new type of end anchorage

  • Fonseca, Alexandre;Marques, Bruno;Simoes, Rui
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1381-1402
    • /
    • 2015
  • The application of composite steel-concrete slabs with profiled steel sheeting has increased, due to the various advantages in relation to reinforced concrete slabs such as, the reduced thickness, the reduced amount of lost formwork needed, as well as the speed of execution. The loss of longitudinal shear resistance is, generally, the governing design mode for simply supported spans of common lengths. For common distributed loadings, the composite behaviour is influenced by the partial shear connection between the concrete and the steel sheeting. The present research work is intended to contribute to improving the ultimate limit state behaviour of composite slabs using end anchorage. Eurocode 4, Part 1.1 (EN 1994-1-1) provides an analytical methodology for predicting the increase of longitudinal resistance, achieved by using shear studs welded through the steel sheeting as the end anchorage mechanism. The code does not supply an analytical methodology for other kinds of end anchorage so, additional tests or studies are needed to prove the effectiveness of these types of anchorage. The influence of end anchorage mechanisms provided by transverse rebars at the ends of simply supported composite slabs is analysed in this paper. Two experimental programmes were carried out, the first to determine the resistance provided by the new end anchorage mechanism and the second to analyse its influence on the behaviour of simply supported composite slabs.

An Application of the Analytical Hierarchy Process (AHP) for Safety measurement in Malaysian Construction Industry

  • Samad Doostdar;Zubaidah Ismail
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.66-73
    • /
    • 2013
  • Analytical Hierarchy Process (AHP) is a famous method amongst Multi Criteria Decision Making (MCDM), set up by Saaty in 1980. AHP can be determined as a methodology of hierarchical analysis following reasonable decision making with make simpler a difficult crisis. Decision making in systems of Safety management concerned multipart challenges. AHP is process for get better the composite decisions understanding with analyzes of the problem in a structure of hierarchy. The integration all of applicable decision criteria, their pair wise judgment permits the decision maker to establish the trade-offs amongst objectives. In recent years, Malaysian's economy and infrastructure development have significantly and rapidly risen. The construction industry continues to play a major role in this development as many construction activities have been carried out to meet the high demands of the expansive market. However, the construction industry has faced a wide range of challenges, one of which is the frequent occurrences of accidents at the workplace. An effective safety program can substantially reduce accidents because it can help management to build up safer means of operations and create safe working environments for the workers. Furthermore, by having an effective safety programs, good safety culture can be embedded in organization because it can encourage mutual cooperation between management and workers in the operations of the programs and decisions that affect their safety and health. The focus of this research is development methodology of Analytics Hierarchy Process (AHP) in construction safety factors and investigates the levels of some effective elements in SMS in Malaysian construction industries.

  • PDF

Seismic vulnerability assessment of confined masonry buildings based on ESDOF

  • Ranjbaran, Fariman;Kiyani, Amir Reza
    • Earthquakes and Structures
    • /
    • v.12 no.5
    • /
    • pp.489-499
    • /
    • 2017
  • The effects of past earthquakes have demonstrated the seismic vulnerability of confined masonry structures (CMSs) to earthquakes. The results of experimental analysis indicate that damage to these structures depends on lateral displacement applied to the walls. Seismic evaluation lacks an analytical approach because of the complexity of the behavior of this type of structure; an empirical approach is often used for this purpose. Seismic assessment and risk analysis of CMSs, especially in area have a large number of such buildings is difficult and could be riddled with error. The present study used analytical and numerical models to develop a simplified nonlinear displacement-based approach for seismic assessment of a CMS. The methodology is based on the concept of ESDOF and displacement demand and is compared with displacement capacity at the characteristic period of vibration according to performance level. Displacement demand was identified using the nonlinear displacement spectrum for a specified limit state. This approach is based on a macro model and nonlinear incremental dynamic analysis of a 3D prototype structure taking into account uncertainty of the mechanical properties and results in a simple, precise method for seismic assessment of a CMS. To validate the approach, a case study was considered in the form of an analytical fragility curve which was then compared with the precise method.

Large-span Tunnel Support Design supplemented by Analytical Methods (대단면터널 특성을 고려한 지보설계 개선방안 연구)

  • Jeong, Jae-Ho;Lee, Hee-Suk;Heo, Jong-Seok;Yoon, Sang-Gil
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.949-959
    • /
    • 2006
  • Despite of the popularity of using empirical methods for support design, empirical rules suffer from the inherent problem of providing no indication of the safety degree of the design. For the support design of large span tunnel, it was considered that the empirical design guidelines should be augmented by more explicit design methods. This paper presents an overview of the analytical support design methodology that is used to refine initial empirical recommendations. The initial support design supplemented by analytical methods is validated by probabilistic and deterministic approach applied to stress-induced and structurally controlled gravity-driven instability problem each. As a result, the extent of the potential failure zone is sorted out and numerical parametric studies were performed to gain insight into the overall behavior of tunnel in the potential failure zone. Concequently, it was decided that additional conservation techniques have to be planed as a reserved support pattern.

  • PDF

Modeling and prediction of buckling behavior of compression members with variability in material and/or section properties

  • Gadalla, M.A.;Abdalla, J.A.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.5
    • /
    • pp.631-645
    • /
    • 2006
  • Buckling capacity of compression members may change due to inadvertent changes in the member section dimensions or material properties. This may be the result of repair, modification of section properties or degradation of the material properties. In some occasions, enhancement of buckling capacity of compression members may be achieved through splicing of plates or utilization of composite materials. It is very important for a designer to predict the buckling resistance of the compression member and the important parameters that affect its buckling strength once changes in section and/or material properties took place. This paper presents an analytical approach for determining the buckling capacity of a compression member whose geometric and/or material properties has been altered resulting in a multi-step non-uniform section. This analytical solution accommodates the changes and modifications to the material and/or section properties of the compression member due to the factors mentioned. The analytical solution provides adequate information and a methodology that is useful during the design stage as well as the repair stage of compression members. Three case studies are presented to show that the proposed analytical solution is an efficient method for predicting the buckling strength of compression members that their section and/or material properties have been altered due to splicing, coping, notching, ducting and corrosion.