• Title/Summary/Keyword: analytical derivation

Search Result 124, Processing Time 0.026 seconds

Analytical solution and experimental study of membrane penetration in triaxial test

  • Ji, Enyue;Zhu, Jungao;Chen, Shengshui;Jin, Wei
    • Geomechanics and Engineering
    • /
    • v.13 no.6
    • /
    • pp.1027-1044
    • /
    • 2017
  • Membrane penetration is the most important factor influencing the measurement of volume change for triaxial consolidated-drained shear test for coarse-grained soil. The effective pressure p, average particle size $d_{50}$, thickness $t_m$ and elastic modulus $E_m$ of membrane, contact area between membrane and soil $A_m$ as well as the initial void ratio e are the major factors influencing membrane penetration. According to the membrane deformation model given by Kramer and Sivaneswaran, an analytical solution of the membrane penetration considering the initial void ratio is deduced using the energy conservation law. The basic equations from theory of plates and shells and the elastic mechanics are employed during the derivation. To verify the presented solution, isotropic consolidation tests of a coarse-grained soil are performed by using the method of embedding different diameter of iron rods in the triaxial samples, and volume changes due to membrane penetration are obtained. The predictions from presented solution and previous analytical solutions are compared with the test results. It is found that the prediction from presented analytical solution agrees well with the test results.

A Derivation of Shear Strength Equation based on Arch Action in Reinforced Concrete Beams (R/C 보에서 아취현상에 기초한 전단강도 산정)

  • Kim, Woo;Kim, Dae-Joong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.299-304
    • /
    • 1995
  • An equation is proposed to predict ultimate shear strength. The equatiion on ultimate shear strength, which is purely based on analytical premises, is similar form to ACI code(11-6) which is derived mainly from empirical approach. Furthermore, the strength predicted by the proposed equation show better correlation with the tested values than the values calculated by Zsutty's formula.

  • PDF

An effective stiffness model for RC flexural members

  • Balevicius, Robertas
    • Structural Engineering and Mechanics
    • /
    • v.24 no.5
    • /
    • pp.601-620
    • /
    • 2006
  • The paper presents an effective stiffness model for deformational analysis of reinforced concrete cracked members in bending throughout the short-term loading up to the near failure. The method generally involves the analytical derivation of an effective moment of inertia based on the smeared crack technique. The method, in a simplified way, enables us to take into account the non linear properties of concrete, the effects of cracking and tension stiffening. A statistical analysis has shown that proposed technique is of adequate accuracy of calculated and experimental deflections data provided for beams with small, average and normal reinforcement ratios.

BER Analysis of Coherent Free Space Optical Systems with BPSK over Gamma-Gamma Channels

  • Lim, Wansu
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.237-240
    • /
    • 2015
  • We derived the average bit error rate (BER) of coherent free-space optical (FSO) systems with digital binary phase shift keying (BPSK) modulations over atmospheric turbulence channels with a gamma-gamma distribution. To obtain a generalized derivation in a closed-form expression, we used special integrals and transformations of the Meijer G function. Furthermore, we numerically analyzed and simulated the average BER behavior according to the average SNR for different turbulence strengths. Simulation results are demonstrated to confirm the analytical results.

Seismic lateral earth pressure analysis of retaining walls

  • Ismeik, Muhannad;Shaqour, Fathi
    • Geomechanics and Engineering
    • /
    • v.8 no.4
    • /
    • pp.523-540
    • /
    • 2015
  • Based on limit equilibrium principles, this study presents a theoretical derivation of a new analytical formulation for estimating magnitude and lateral earth pressure distribution on a retaining wall subjected to seismic loads. The proposed solution accounts for failure wedge inclination, unit weight and friction angle of backfill soil, wall roughness, and horizontal and vertical seismic ground accelerations. The current analysis predicts a nonlinear lateral earth pressure variation along the wall with and without seismic loads. A parametric study is conducted to examine the influence of various parameters on lateral earth pressure distribution. Findings reveal that lateral earth pressure increases with the increase of horizontal ground acceleration while it decreases with the increase of vertical ground acceleration. Compared to classical theory, the position of resultant lateral earth force is located at a higher distance from wall base which in turn has a direct impact on wall stability and economy. A numerical example is presented to illustrate the computations of lateral earth pressure distribution based on the suggested analytical method.

Performance Evaluation of Small-Scaled Wind Power Generator with Outer Permanent Magnet Rotor considering Electromagnetic Losses (1) - Magnetic Field Analysis and Electrical Parameters Derivation using Electromagnetic Transfer Relations Theorem - (전자기 손실을 고려한 소형 외전형 영구자석 풍력발전기의 성능 평가 (1) - 전자기 전달관계 기법을 이용한 자계특성해석 및 회로정수 도출 -)

  • Jang, Seok-Myeong;Ko, Kyoung-Jin;Choi, Jang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2179-2189
    • /
    • 2010
  • This paper deals with analytical techniques for performance evaluation of small scaled wind power generator with outer permanent magnet rotor. In part (1), using transfer relations theorem, magnetic field distribution characteristics by PM and armature reaction field are derived. Moreover, electrical parameters such as back-EMF, inductance and resistance are calculated from the obtained field characteristic equations. The proposed analytical techniques are validated by nonlinear finite element method using commercial software 'Maxwell' and performance experiments of the manufactured generator. In part (2), generating characteristics analysis such as constant speed characteristics and constant resistive load characteristics, and performance evaluation according to variation of wind speed will be accomplished using the derived electrical parameters.

Comparative Performance Evaluation of Location Registration Schemes in Mobile Communication Network (이동통신망에서 위치등록 방법의 성능 비교)

  • Luo, Yong;Baek, Woon-Young
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2007.05a
    • /
    • pp.47-54
    • /
    • 2007
  • In this study, we consider the movement-based registration (MBR), location-based registration (LBR) and distance-based registration (DBR) schemes. Analytical models based on a 2-dimensional random walk in a hexagonal cell configuration are considered to analyze and compare the performances of these three schemes. We focus on the derivation of the registration costs of LBR and DBR using an analytical method and then show that DBR always outperforms both MBR and LBR. Numerical results are provided to demonstrate the validity of our models under various circumstances.

  • PDF

Performance Evaluation of Registration Schemes in Mobile Communication Network: Movement-Based Registration and Distance-Based Registration (이동통신망에서 위치등록 방법의 성능평가: 이동기준 위치등록과 거리기준 위치등록)

  • Ryu, Byung-Han;Baek, Jang-Hyun
    • IE interfaces
    • /
    • v.15 no.4
    • /
    • pp.401-408
    • /
    • 2002
  • An efficient mobility management for mobile stations plays an important role in mobile communication network. In this study, we consider movement-based registration(MBR) and distance-based registration(DBR). Analytical models based on 2-dimensional random walk in hexagonal cell configuration are considered to analyze the performance of MBR and DBR. Especially, we focus on the derivation of the registration cost of DBR scheme by using two analytical methods and then show that DBR always outperforms MBR. Numerical results are provided to demonstrate optimal condition under various circumstances.

A Study on an Analytical Approach to the Derivation of Fuzzy PI Scaling Factor (퍼지 PI scaling factor의 분석적인 유도방법에 관한 연구)

  • 전기영
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.460-463
    • /
    • 2000
  • Fuzzy logic control(FLC) has been studied extensively and has been applied in various applications. The most popular control strategy takes the Fuzzy Proportional-Integral(FPI) form while systematic methods have been developed to derive the fuzzy rules and membership functions the choice of the scaling factors remains an open problem, In this paper an analytical FPI scaling factor determining method is derived based on the functional equivalence of the PI and FPI controllers. Simulation have been carried out with a brushless DC motor drive system as test-bed the obtained results drive system as test-bed the obtained results have verified that the derived method is applicable to both the initial choice and further tuning of the FPI scaling factors.

  • PDF

Analytical Solutions for Wave deformation Due to Semi-Infinite Breakwaters (반무한방파제에 의한 파랑변형 해석해)

  • Seo, Seung-Nam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.3
    • /
    • pp.156-164
    • /
    • 1999
  • Two analytical solutions for wave diffraction by a semi-infinite breakwater, which Penney and Price (1952), and Stoker (1957) presented, are rederived. Since in previous works the derivations were skipped or briefly given, in the paper the derivation is brought into focus. Numerical computations of the solutions are presented and solution behavior of Stoker's method due to a number of terms in the series is analyzed.

  • PDF