• 제목/요약/키워드: analysis parameters

검색결과 18,206건 처리시간 0.044초

Coupling relevance vector machine and response surface for geomechanical parameters identification

  • Zhao, Hongbo;Ru, Zhongliang;Li, Shaojun
    • Geomechanics and Engineering
    • /
    • 제15권6호
    • /
    • pp.1207-1217
    • /
    • 2018
  • Geomechanics parameters are critical to numerical simulation, stability analysis, design and construction of geotechnical engineering. Due to the limitations of laboratory and in situ experiments, back analysis is widely used in geomechancis and geotechnical engineering. In this study, a hybrid back analysis method, that coupling numerical simulation, response surface (RS) and relevance vector machine (RVM), was proposed and applied to identify geomechanics parameters from hydraulic fracturing. RVM was adapted to approximate complex functional relationships between geomechanics parameters and borehole pressure through coupling with response surface method and numerical method. Artificial bee colony (ABC) algorithm was used to search the geomechanics parameters as optimal method in back analysis. The proposed method was verified by a numerical example. Based on the geomechanics parameters identified by hybrid back analysis, the computed borehole pressure agreed closely with the monitored borehole pressure. It showed that RVM presented well the relationship between geomechanics parameters and borehole pressure, and the proposed method can characterized the geomechanics parameters reasonably. Further, the parameters of hybrid back analysis were analyzed and discussed. It showed that the hybrid back analysis is feasible, effective, robust and has a good global searching performance. The proposed method provides a significant way to identify geomechanics parameters from hydraulic fracturing.

Correlation analysis between rotation parameters and attitude parameters in simulated satellite image

  • Yun, Young-Bo;Park, Jeong-Ho;Yoon, Geun-Won;Park, Jong-Hyun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.553-558
    • /
    • 2002
  • Physical sensor model in pushbroom satellite images can be made from sensor modeling by rotation parameters and attitude parameters on the satellite track. These parameters are determined by the information obtained from GPS, INS, or star tracker. Provided from satellite image, an auxiliary data error is connected directly with an error of rotation parameters and attitude parameters. This paper analyzed how obtaining satellite images influenced errors of rotation parameters and attitude parameters. furthermore, for detailed analysis, this paper generated simulated satellite image, which was changed variously by rotation parameters and attitude parameters of satellite sensor model. Simulated satellite image is generated by using high-resolution digital aerial image and DEM (Digital Elevation Model) data. Moreover, this paper determined correlation of rotation parameter and attitude parameters through error analysis of simulated satellite image that was generated by various rotation parameters and attitude parameters.

  • PDF

Sensitivity Analysis on Various Parameters for Lattice Analysis of DUPIC Fuel with WIMS-AECL Code

  • Gyuhong Roh;Park, Hangbok;Park, Jee-Won
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 추계학술발표회논문집(1)
    • /
    • pp.64-69
    • /
    • 1997
  • The code WIMS-AECL has been used for the lattice analysis of DUPIC fuel. The lattice parameters calculated by the code is sensitive to the choice of number of parameters, such as the number of tracking lines, number of condensed groups, mesh spacing in the moderator region, other parameters vital to the calculation of probabilities and burnup analysis. We have studied this sensitivity with respect to these parameters and recommend their proper values which are necessary for carrying out the lattice analysis of DUPIC fuel.

  • PDF

사면 안정해석에 적용되는 지반강도정수($C, _{\Phi}$)와 사면경사 민감도 분석 (Sensitivity Analysis of Shear Strength Parameters($C, _{\Phi}$)and Slope Angel in Slope Stability Analysis)

  • 백용;배규진;권오일;장수호;구호본
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.179-184
    • /
    • 2005
  • Shear strength parameters obtained from filed survey are important factors in the analysis of slope stability. In this study, sensitivity analysis was performed to evaluate the effect of input parameters on the analysis of slope stability. The input parameters selected for sensitivity analysis were slope angle, cohesion, and friction angle. Monte-Carlo Simulation method was used for calculating input parameters and the factor of safety was computed by means of limit equilibrium method. A rock slope, which has failed in the field, was used for the sensitivity analysis in the analysis of slope stability. The result of analysis shows that the factor of safety of the rock slope was a little low. From partial correlation coefficient(PPC) of input parameters determined from the sensitivity analysis, slope stability was dependant on cohesion and slope angle. The effect of friction angle was lower than that of cohesion and slope angle on slope stability.

  • PDF

사면 안정해석에 적용되는 입력 인자들의 민감도 분석 (Sensitivity Analysis of Input Parameters in Slope Stability Analysis)

  • 백용;배규진;권오일;장수호;구호본
    • 한국지반공학회논문집
    • /
    • 제21권5호
    • /
    • pp.75-82
    • /
    • 2005
  • 사면 안정해석은 현장 조사로부터 얻어지는 지반강도 정수의 역할이 매우 중요한 인자로 작용한다. 본 연구에서는 사면안정성 분석에서 입력변수들에 대한 상대적인 평가를 위하여 민감도 분석을 수행하였다. 설정된 입력 변수들은 사면의 경사, 점착력, 내부마찰각의 3가지 종류로 선별하였다. 사면안정해석은 기본적으로 한계평형으로 해석하였으며 수집된 현장자료를 이용하여 분석한 결과 확률변수들은 정규분포를 나타내는 것으로 나타났다. 몬테카를로 시뮬레이션을 이용하여 입력변수들을 발생시켰으며 붕괴된 암반사면을 이용하여 민감도 분석을 실시하였다. 분석결과 암반사면의 안전율은 예상보다 낮게 나타나는 것을 알 수 있었다. 민감도 분석 지수(PCC)를 이용하여 분석한 결과 사면 안전율에는, 점착력과 사면 경사가 매우 민감한 영향을 미치는 것으로 나타났으며 내부마찰각은 상대적으로 낮은 민감성을 띠는 것으로 분석되었다.

Mode Analysis of Cascaded Four-Conductor Lines Using Extended Mixed-Mode S-Parameters

  • Zhang, Nan;Nah, Wansoo
    • Journal of electromagnetic engineering and science
    • /
    • 제16권1호
    • /
    • pp.57-65
    • /
    • 2016
  • In this paper, based on the mode analysis of four-conductor lines, the extended mixed-mode chain-parameters and S-parameters of four-conductor lines are estimated using current division factors. The extended mixed-mode chain-parameters of cascaded four-conductor lines are then obtained with mode conversion. And, the extended mixed-mode S-parameters of cascaded four-conductor lines can be predicted from the transformation of the extended chain-parameters. Compared to the extended mixed-mode S-parameters of four-conductor lines, the cross-mode S-parameters are induced in the extended mixed-mode S-parameters of cascaded four-conductor lines, due to the imbalanced current division factors of cascaded two sections. The generated cross-mode S-parameters make the equivalent different- and common-mode conductors not independent from each other again. In addition, a new mode conversion, which applies the imbalanced current division factors, between the extended mixed-mode S-parameters and standard S-parameters is also proposed in this paper. Finally, the validity of the proposed extended mixed-mode S-parameters and mode conversion is confirmed by a comparison of the simulated and estimated results of shielded cable.

Important measure analysis of uncertainty parameters in bridge probabilistic seismic demands

  • Song, Shuai;Wu, Yuan H.;Wang, Shuai;Lei, Hong G.
    • Earthquakes and Structures
    • /
    • 제22권2호
    • /
    • pp.157-168
    • /
    • 2022
  • A moment-independent importance measure analysis approach was introduced to quantify the effects of structural uncertainty parameters on probabilistic seismic demands of simply supported girder bridges. Based on the probability distributions of main uncertainty parameters in bridges, conditional and unconditional bridge samples were constructed with Monte-Carlo sampling and analyzed in the OpenSees platform with a series of real seismic ground motion records. Conditional and unconditional probability density functions were developed using kernel density estimation with the results of nonlinear time history analysis of the bridge samples. Moment-independent importance measures of these uncertainty parameters were derived by numerical integrations with the conditional and unconditional probability density functions, and the uncertainty parameters were ranked in descending order of their importance. Different from Tornado diagram approach, the impacts of uncertainty parameters on the whole probability distributions of bridge seismic demands and the interactions of uncertainty parameters were considered simultaneously in the importance measure analysis approach. Results show that the interaction of uncertainty parameters had significant impacts on the seismic demand of components, and in some cases, it changed the most significant parameters for piers, bearings and abutments.

유한요소법을 이용한 레이저 표면경화처리 공정변수의 민감도 해석 (Sensitivity Analysis of Processing Parameters for the Laser Surface Hardening Treatment by Using the Finite Element Method)

  • 이세환;양영수
    • Journal of Welding and Joining
    • /
    • 제19권2호
    • /
    • pp.228-234
    • /
    • 2001
  • A methodology is developed and used to evaluate the response sensitivity of the thermal systems to variations in their design parameters. Technique for computing the sensitivity of temperature distributions to changes in processing parameters needed to decide the more effective laser input parameters for laser surface hardening treatment is considered. In this study, a state equation governing the heat flow in laser surface treatment is analyzed using a three-dimensional finite element method and sensitivity data of the processing parameter obtained using a direct differentiation method is applied to the sensitivity analysis. The interesting processing parameters are taken as the laser scan velocity and laser beam radius ( $r_{ b}$), and the sensitivities of the temperature T versus v and $r_{b}$ are analyzed. These sensitivity results are obtained with another parameters fixed. To verify the numerical analysis results, hardened layer dimensions (width and depth) of the numerical analysis are compared with the experimental ones.nes.

  • PDF

A Bayesian uncertainty analysis for nonignorable nonresponse in two-way contingency table

  • Woo, Namkyo;Kim, Dal Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권6호
    • /
    • pp.1547-1555
    • /
    • 2015
  • We study the problem of nonignorable nonresponse in a two-way contingency table and there may be one or two missing categories. We describe a nonignorable nonresponse model for the analysis of two-way categorical table. One approach to analyze these data is to construct several tables (one complete and the others incomplete). There are nonidentifiable parameters in incomplete tables. We describe a hierarchical Bayesian model to analyze two-way categorical data. We use a nonignorable nonresponse model with Bayesian uncertainty analysis by placing priors in nonidentifiable parameters instead of a sensitivity analysis for nonidentifiable parameters. To reduce the effects of nonidentifiable parameters, we project the parameters to a lower dimensional space and we allow the reduced set of parameters to share a common distribution. We use the griddy Gibbs sampler to fit our models and compute DIC and BPP for model diagnostics. We illustrate our method using data from NHANES III data to obtain the finite population proportions.

정상 성인의 운동역학적 보행분석 (A Study on Kinetic Gait Analysis of the Normal Adult)

  • 김건;윤나미
    • The Journal of Korean Physical Therapy
    • /
    • 제21권2호
    • /
    • pp.87-95
    • /
    • 2009
  • Purpose: This study reports the basic reference data of the specific gait parameters for Korean normal adults. Methods: The basic gait parameters were extracted from 73 Adults (35 men and 38 women), 18 to 33 years of age, using a Vicon MX motion analysis system. The segment kinetics, such as joint moment and power, was analyzed at the hip, knee and ankle. Results: The motion patterns are typically associated with a specific phase of the gait cycle. The temporal-spatial gait parameters of Korean normal adults, such as cadence, walking speed, stride length, single support and double support, were similar to the other western reference data. The kinetic parameters of Korean normal adults, such as joint moments of force, joint mechanical power generation or absorption and ground reaction forces, were also similar to other western reference datasets. Conclusion: This study demonstrates that objective gait analysis can be used to document the gait patterns of normal healthy adults. The techniques of 3-dimensional temporal-spatial gait parameters and kinematic parameters analysis can provide a detailed biomechanical description of a normal and pathological gait.

  • PDF