• Title/Summary/Keyword: analysis parameters

Search Result 18,206, Processing Time 0.044 seconds

The effects of uncertainties in structural analysis

  • Pellissetti, M.F.;SchueIler, G.I.
    • Structural Engineering and Mechanics
    • /
    • v.25 no.3
    • /
    • pp.311-330
    • /
    • 2007
  • Model-based predictions of structural behavior are negatively affected by uncertainties of various type and in various stages of the structural analysis. The present paper focusses on dynamic analysis and addresses the effects of uncertainties concerning material and geometric parameters, mainly in the context of modal analysis of large-scale structures. Given the large number of uncertain parameters arising in this case, highly scalable simulation-based methods are adopted, which can deal with possibly thousands of uncertain parameters. In order to solve the reliability problem, i.e., the estimation of very small exceedance probabilities, an advanced simulation method called Line Sampling is used. In combination with an efficient algorithm for the estimation of the most important uncertain parameters, the method provides good estimates of the failure probability and enables one to quantify the error in the estimate. Another aspect here considered is the uncertainty quantification for closely-spaced eigenfrequencies. The solution here adopted represents each eigenfrequency as a weighted superposition of the full set of eigenfrequencies. In a case study performed with the FE model of a satellite it is shown that the effects of uncertain parameters can be very different in magnitude, depending on the considered response quantity. In particular, the uncertainty in the quantities of interest (eigenfrequencies) turns out to be mainly caused by very few of the uncertain parameters, which results in sharp estimates of the failure probabilities at low computational cost.

Application of the QUAL2Kw model to a Polluted River for Automatic Calibration and Sensitivity Analysis of Genetic Algorithm Parameters (오염하천의 자동보정을 위한 QUAL2Kw 모형의 적용과 유전알고리즘의 매개변수에 관한 민감도분석)

  • Cho, Jae-Heon
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.3
    • /
    • pp.357-365
    • /
    • 2011
  • The QUAL2K has the same basic characteristics as the QUAL2E model, which has been widely used in stream water quality modeling; in QUAL2K, however, various functions are supplemented. The QUAL2Kw model uses a genetic algorithm(GA) for automatic calibration of QUAL2K, and it can search for optimum water quality parameters efficiently using the calculation results of the model. The QUAL2Kw model was applied to the Gangneung Namdaecheon River on the east side of the Korean Peninsula. Because of the effluents from the urban area, the middle and lower parts of the river are more polluted than the upper parts. Moreover, the hydraulic characteristics differ between the lower and upper parts of rivers. Thus, the river reaches were divided into seven parts, auto-calibration for the multiple reaches was performed using the function of the user-defined automatic calibration of the rates worksheets. Because GA parameters affect the optimal solution of the model, the impact of the GA parameters used in QUAL2Kw on the fitness of the model was analyzed. Sensitivity analysis of various factors, such as population size, crossover probability, crossover mode, strategy for mutation and elitism, mutation rate, and reproduction plan, were performed. Using the results of this sensitivity analysis, the optimum GA parameters were selected to achieve the best fitness value.

Real-Time Harmonic Parameters Analyzer for Evaluating Induction Motor Drive System (유도전동기 구동시스템 평가를 위한 실시간 고조피 파라미터 분석장치)

  • Lim, Young-Cheol;Jung, Young-Gook
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.479-483
    • /
    • 1997
  • In general, motor parameters can be divided into mechanical/electrical parameters and harmonic parameters. Mechanical/electrical parameters identification of motor have been studying systematically for a long time. But, systematical study on harmonic parameters analysis for efficient motor drive system are very poor. The goal of this paper is to propose analyzing method of harmonic parameters for motor drive system with various experimental graphic screens and numerical results and to develope harmonic parameters analyzer. A developed analyzer is made up 586-PC and DSP (digital signal processor) board, motor drive system, power and harmonic parameters analyzing software for windows. Harmonic parameters are analyzed using correlation signal processing techniques based on the correlation between voltage and current waveforms. Analysis results are visualized by 3-D current coordinates, and it is compared and evaluated with conventional time/frequency domain. To verify the validity of the proposed system, 1/4HP capacitor run type single phase induction motor and thyristor speed controller is used for analyzing. Harmonic parameters of motor drive system is analyzed and verified, with varying fire angle of thyristor speed controller, and the proposed approach is to confirm validity.

  • PDF

Case Studies on Determination of Strength Parameters for the Analysis of Rock Slope Stability (암반사면 안정 해석을 위한 강도정수 산정 사례연구)

  • Kim, Hak Joon;Jeong, Jun-Ho
    • The Journal of Engineering Geology
    • /
    • v.30 no.1
    • /
    • pp.85-101
    • /
    • 2020
  • The estimation of strength parameters is very important for the stability analysis of rock slopes. Various methods for the determination of strength parameters were suggested by various researchers. The number of methods used for the estimation of strength parameters in the stability analysis of rock slopes were investigated based on literature reviews. The frequency of the method determining strength parameters were investigated with respect to failure types. The cohesion and friction angles of the rock and discontinuities are presented with RMR values. The cohesion shows wider range of values relative to those of friction angles according to current studies. Even though RMR does not show any correlation with cohesion values, RMR and the friction angle of the rock clearly shows a positive relationship. Proper methods should be utilized for the determination of strength parameters with consideration for failure types and be proved through literature reviews. The credibility of determining strength parameters is expected to improve if strength parameters data are accumulated from the back analysis performed for failed local rock slopes.

Study on sensitivity of modal parameters for suspension bridges

  • Liu, Chunhua;Wang, Ton-Lo;Qin, Quan
    • Structural Engineering and Mechanics
    • /
    • v.8 no.5
    • /
    • pp.453-464
    • /
    • 1999
  • Safety monitoring systems of structures generally resort to detecting possible changes of dynamic system parameters. Sensitivity analysis of these dynamic system parameters may implement these techniques. Conventional structural eigenvalue problems are discussed in the scope of those systems with deterministic parameters. Large and flexible structures, such as suspension bridges, actually possess stochastic material properties and these random properties unavoidably affect the dynamic system parameters. The sensitivity matrix of structural modal parameters to basic design variables has been established in this paper. Moreover, second order statistics of natural frequencies due to the randomness of material properties have been discussed. It is concluded from numerical analysis of a modem suspension bridge that although the second order statistics of frequencies are small relatively to the change of basic design variables, such as density of mass and modulus of elasticity, the sensitivities of modal parameters to these variables at different locations change in magnitude.

Correlation analysis of voice characteristics and speech feature parameters, and classification modeling using SVM algorithm (목소리 특성과 음성 특징 파라미터의 상관관계와 SVM을 이용한 특성 분류 모델링)

  • Park, Tae Sung;Kwon, Chul Hong
    • Phonetics and Speech Sciences
    • /
    • v.9 no.4
    • /
    • pp.91-97
    • /
    • 2017
  • This study categorizes several voice characteristics by subjective listening assessment, and investigates correlation between voice characteristics and speech feature parameters. A model was developed to classify voice characteristics into the defined categories using SVM algorithm. To do this, we extracted various speech feature parameters from speech database for men in their 20s, and derived statistically significant parameters correlated with voice characteristics through ANOVA analysis. Then, these derived parameters were applied to the proposed SVM model. The experimental results showed that it is possible to obtain some speech feature parameters significantly correlated with the voice characteristics, and that the proposed model achieves the classification accuracies of 88.5% on average.

A Study on the Parameters Contributing to the Void Crushing in the Cogging Process of Large Forged Products (대형 단조품 코깅 공정의 기공 압착 인자에 대한 연구)

  • Song, M.C.;Kwon, I.K.;Park, Y.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.127-130
    • /
    • 2007
  • Effect of the forging process parameters on the void crushing is the cogging process has been studied in order to find the most effective factor. The Process parameters used for this study are die width ratio, reduction ratio and pre-cooling time before cogging process. Void crushing analysis about the selected process parameters was carried out using FE analysis. The results of FE analysis were evaluated by Taguchi method. It was found that the efficiency of void crushing increases with an increase in the values of all selected process parameters and the principal factor controlling the void crushing was identified as the reduction ratio.

  • PDF

A Study on the Parameters Determining the Void Crushing Ratio in the Cogging Process of Large Forged Products (대형 단조품 코깅 공정의 기공 압착 인자에 대한 연구)

  • Song, M.C.;Kwon, I.K.;Park, Y.G.
    • Transactions of Materials Processing
    • /
    • v.16 no.7
    • /
    • pp.502-508
    • /
    • 2007
  • Effect of the process parameters of the cogging process on the void crushing has been studied in order to identify the most effective factor. The process parameters considered in this study are die width ratio, reduction ratio and pre-cooling time before cogging process. Void crushing analysis with the selected process parameters was carried out using FE analysis. The results of FE analysis were evaluated by Taguchi method. It was found that the efficiency of void crushing increases with an increase in the values of all selected process parameters and the principal factor controlling the void crushing was identified as the reduction ratio.

Modeling of Beam Structures from Modal Parameters (모달 파라미터를 이용한 보 구조물의 모델링)

  • Hwang, Woo-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.519-522
    • /
    • 2006
  • Accurate modeling of a dynamic system from experimental data is the bases for the model updating or heath monitoring of the system. Modal analysis or modal test is a routine process to get the modal parameters of a dynamic system. The modal parameters include the natural frequencies, damping ratios and mode shapes. This paper presents a new method that can derive the equations of motion for a dynamic system from the modal parameters obtained by the modal analysis or modal test. The present method based on the relation between the eigenvalues and eigenvectors of the state space equation derives the mass, damping and stiffness matrices of the system. The modeling of a cantilevered beam from modal parameters is an example to prove the efficiency and accuracy of the present method. Using the lateral displacements only, not the rotations, gives limited information for the system. The numerical verification up to now gives reasonable results and the verification with the test data is scheduled.

  • PDF

Geometric Error Analysis of Surface Grinding by Design of Experiments (실험계획법을 이용한 연삭가공물의 형상오차 분석)

  • 지용주;곽재섭;하만경
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.4
    • /
    • pp.1-8
    • /
    • 2004
  • Various controllable parameters of an experiment have influence on grinding process. In order to get good products with a high quality, these parameters should be considered whether each parameter has relations to the quality. This paper describes the use of the design of experiments to minimize geometric error in surface grinding. Controllable parameters for the design of experiments were selected as spindle speed, table speed, depth of cut and grain size. From the experimental results, a degree of influence between these parameters and the geometric error was evaluated. An optimal set of grinding conditions was obtained by means of analysis of variance(ANOVA).