• Title/Summary/Keyword: analysis of results

Search Result 140,202, Processing Time 0.117 seconds

Natural Frequency Analysis and Modal Test of Fuel Pipe for Vehicle Engine (자동차엔진용 고압연료 공급 파이프의 고유진동수 해석 및 진동시험)

  • Son, In-Soo;Hur, Sang-Bum;Ahn, Sung-Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.4_2
    • /
    • pp.475-480
    • /
    • 2021
  • The purpose of this study is to obtain the natural frequency of fuel supply pipes for vehicle engines through modal analysis and testing and compare the resulting values to ensure the reliability of the analysis. In other words, in this study, we obtain the unique frequency of the fuel pipe of the vehicle engine through analysis and testing and compare its results. Comparing the natural frequency obtained through analysis and testing, the first and third vibration modes obtained accurate natural frequency results of less than 1% and very similar results of less than 5% maximum error over the fourth vibration modes. These results are determined that if design changes of fuel pipes are made depending on the vehicle in the future, there will be no problem in obtaining the natural frequency of pipes that have been changed by analysis. Through future analysis and testing, durability and stability evaluation of connections of fuel supply pipes for vehicle engines will be carried out.

3D Numerical Simulation of Pullout Behavior of FRP Embedded in Concrete using RBSN Method (RBSN 방법을 사용한 콘크리트에 삽입된 FRP rod의 Pull-out거동의 3D 수치 Simulation)

  • Kim, Jang-Ho;Li, Jing;Tran, Tuan Kiet;Hong, Jong-Suk;Kim, Yun-Ho;Lee, Gyeong-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.365-368
    • /
    • 2006
  • RBSN Method, Rigid-Body-Spring Network Method, is a structural analysis method that overcomes the problems faced in FEM analysis of concrete or crack forming structures. In RBSN, irregular lattices are used to model structural components consisting of bulk material, curvilinear reinforcements, and their interfaces. Because reinforcements and their interfaces in the bulk material are freely positioned, meshing is irrespective of the geometry of the representing bulk material. In this paper, RBSN method of 3D is applied in simulating the pull-out test of FRP (Fiber Reinforced Polymer) embedded in concrete. The comparison of analysis results to experimental results shows that RBSN method simulates the shear-slip behavior very precisely. From the analysis results, 3D RBSN method is proven to be an effective and accurate analysis method for concrete structural analysis. Also, the results show that RBSN method can be a potential analysis method for concrete structures that can replace the current FEM analysis.

  • PDF

Fatigue Analysis of Vehicle Chassis Component Considering Resonance Frequency (공진 주파수를 고려한 차량 섀시 부품의 피로해석)

  • Lee Sang Beom;Yim Hong Jae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.6
    • /
    • pp.94-101
    • /
    • 2004
  • The purpose of this raper is to assess the benefits of frequency domain fatigue analysis and compare it with more conventional time domain techniques. The multi-body dynamic analysis, FE analysis and fatigue life prediction technique are applied for the frequency domain fatigue analysis. To obtain the dynamic load history used in the frequency domain fatigue analysis, the computer simulations running over typical road Profiles are carried out by utilizing vehicle dynamic model. The fatigue life estimation for the rear suspension system of small-sized passenger car is performed by using resonance durability analysis technique, and the estimation results are compared with the conventional quasi-static durability analysis results. For the pothole simulation, the percent changes, of the fatigue life between the two durability analysis techniques don't exceed 10%. But for the Belgian road simulation because of the resonance effect, the fatigue life using the resonance durability analysis technique are much smaller estimated than the quasi-static durability analysis results.

Study on the Nonlinear Characteristic Effects of Dielectric on Warpage of Flip Chip BGA Substrate

  • Cho, Seunghyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.2
    • /
    • pp.33-38
    • /
    • 2013
  • In this study, both a finite element analysis and an experimental analysis are executed to investigate the mechanical characteristics of dielectric material effects on warpage. Also, viscoelastic material properties are measured by DMA and are considered in warpage simulation. A finite element analysis is done by using both thermal elastic analysis and a thermo-viscoelastic analysis to predict the nonlinear effects. For experimental study, specimens warpage of non-symmetric structure with body size of $22.5{\times}22.5$ mm, $37.5{\times}37.5$ mm and $42.5{\times}42.5$ mm are measured under the reflow temperature condition. From the analysis results, experimental warpage is not similar to FEA results using thermal elastic analysis but similar to FEA results using thermo-viscoelastic analysis. Also, its effect on substrate warpage is increased as core thickness is decreased and body size is getting larger. These FEA and the experimental results show that the nonlinear characteristics of dielectric material play an important role on substrate warpage. Therefore, it is strongly recommended that non-linear behavior characteristics of a dielectric material should be considered to control warpage of FCBGA substrate under conditions of geometry, structure and manufacturing process and so on.

Grain Size Analysis Using Morphological Properties of Grains (입자의 형태적 특성을 활용한 퇴적물 입도분석)

  • Choi, Kwang Hee
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.2
    • /
    • pp.19-28
    • /
    • 2020
  • Grain size analysis is the most basic procedure for identifying the origin, transport and sedimentation processes of sediments, and is widely used in geomorphology and sedimentology. Traditionally, grain size was determined by a sieve-pippette method, but the use of automated analyzers is increasing in recent years. These analyzers have many advantages over traditional techniques, but the measurement results are not always the same. It is still difficult to solve the pretreatment problem such as incomplete diffusion and residual organic matter, and inappropriate results may be obtained. This study compared image-based grain size analysis and sieve analysis to verify its statistical reliability, and conducted experiments to enhance the measurement accuracy using shape parameters. The results showed that the image-based analysis overestimated the grain size of sand dunes by about 7% compared to the sieve analysis, but the two measurements were not statistically different. In addition, by using shape parameters, such as aspect ratio, sphericity, and convexity, improved statistics were obtained compared to the original data. Using the morphological properties of the individual grains is a complementary method to the incomplete pretreatment of the grain size analysis process, and at the same time, it will contribute to improving the accuracy and reliability of the results.

Review on the Relationship of Dissolved Gas Analysis and Internal Inspection of Transformer (변압기 절연재료 분석과 내부점검 결과와의 상관성 연구)

  • Park, Hyun-Joo;Nam, Chang-Hyun;Jung, Nyun-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1869-1873
    • /
    • 2010
  • For reliable operation of oil-filled electrical equipment, monitoring and maintenance of insulating oil is essential. Dissolved gas analysis(DGA) is widely used for monitoring faults in high voltage electrical equipment in service. Therefore, oil analysis should be monitored regularly during its service life. KEPCO has investigated thousands of dissolved gas analysis data since 1985, and conducted studies on the relationship of gas in oil analysis and internal inspection results of transformer. As the results, KEPCO revised criteria for transformer diagnosis and has applied it since 2008. Almost of 100 cases of internal inspection results since 2001 have been investigated. This paper presents the correlation of the fault-identifying gases with faults found in actual transformers and how should we approach to internal inspection of transformer by dissolved gas analysis.

A Study on the Verification Scheme for Electrical Circuit Analysis of Fire Hazard Analysis in Nuclear Power Plant (원전 화재위험도분석에서 전기회로분석 검증방안에 관한 연구)

  • Yim, Hyuntae;Oh, Seungjun;Kim, Weekyong
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.3
    • /
    • pp.114-122
    • /
    • 2015
  • In a fire hazard analysis (FHA) for nuclear power plant, various electrical circuit analyses are performed in the parts of fire loading analysis, fire modeling analysis, separation criteria analysis, associated circuit analysis, and multiple spurious operation analysis. Thus, electrical circuit analyses are very important areas so that reliability of the analysis results should be assured. This study is to establish essential electrical elements for each analysis for verification of the reliability of the electrical circuit analyses in the fire hazard analysis for nuclear power plants. Applying the results derived by the study to domestic nuclear power plants, it is expected to determine the adequacy of the fire hazard analysis report and contribute to the reliability of the fire hazard analysis of those plants.

Stress Analysis of Pressure Vessels in Nuclear Power Plants (Part II : Stress Analysis of Tapered Cylinder in the Shell-Head Junction) (원자로압력용기의 응력해석 (제 2 보, 원데이퍼진 원통부의 응력해석))

  • 김천욱;주영우
    • Journal of the KSME
    • /
    • v.16 no.2
    • /
    • pp.100-107
    • /
    • 1976
  • Stress analysis of tapered cylinder of reactor vessels is investigated by means of the intersection method. The tapered cylinder is approximated into three models-average cylinder, conical frustum, and ring. The results are compared with those of the finite element method program and an experiment. In this paper, the following results are obtained: (1) the best aproximation has been obtained by the ring model analysis: (2) the intersection analysis of the tapered cylinder by the ring model shows a sufficient accuracy for the stress analysis of reactor vessels.

  • PDF

Simplified methods for seismic assessment of existing buildings

  • Tehranizadeh, Mohsen;Amirmojahedi, Maryam;Moshref, Amir
    • Earthquakes and Structures
    • /
    • v.10 no.6
    • /
    • pp.1405-1428
    • /
    • 2016
  • Besides the complex instructions of guidance documents for seismic rehabilitation of existing buildings, some institutions have provided simple criteria in terms of simplified rehabilitations. ASCE 41-06 is one of documents that introduced a simple method for assessment of certain buildings that do not require advanced analytical procedures. Furthermore the New Zealand guideline has presented a simple lateral mechanism analysis that is a hand static analysis for determining the probable collapse mechanism, lateral strength and displacement capacity of the structure. The present study is focused on verifying the results of the simplified methods which is used by NZSEE and ASCE 41-06 in assessment of existing buildings. For this, three different special steel moment and braced frames are assessed under these two guidelines and the accuracy of the results is checked with the results of nonlinear static and dynamic analysis. After comparison of obtained results, suggestions are presented to improve seismic retrofit criteria.

Stress Analysis of the Prestressed Dies by Using FEM (유한요소법을 이용한 예압된 금형의 응력해석)

  • Yeo, Hong-Tae;Choi, Young;Hur, Kwan-Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.114-122
    • /
    • 1999
  • By using the FEM, a method for the stress analysis of the presented dies has been proposed. In this method, FEM and Lame equation are used for the analysis of the die insert and the stress ring, respectively. The proposed method includes the calculation of the contact pressure between the die insert and the stress ring. To show the validity, the proposed method has been applied to the simple test problem. The results of the stress analysis have been compared with the results of ANSYS, a commercial FE-code. Cold extrusion has been simulated by using the rigid-plastic FEM and the results of the deformation analysis have been used as the input of the die structure analysis. The stress states of the prestressed extrusion die have been obtained. The stress analysis of the die insert with stress rings has also been performed during extrusion.

  • PDF