• Title/Summary/Keyword: anaerobic reductive dechlorination (ARD)

Search Result 2, Processing Time 0.015 seconds

PCE, TCE로 오염된 지하수내 미생물 특성 및 분포

  • 권수열;김진욱;박후원;이진우;김영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.158-161
    • /
    • 2004
  • Chlorinated aliphatic hydrocarbons (CAHs) especially perchlorethylene (PCE) and trichlooethylene (TCE) are common groundwater contaminants in Korea. PCE and TCE were often reductively dechiorinated in an aquifer. Several isolates dechlorinate PCE to TCE or cis-1,2 dichloroethylene (c-DCE) were obtained from contaminated and pristine sites in USA and Europe. However in Korea, no information on indigenous microorganism being involved in reductive dechlorination of PCE and TCE is available and different dechlorinating microorganisms might be reside in Korea, since geochemical, and hydrogeological conditions are different, compared to those in the other sites. So we evaluate that: 1) if reductive dechlorinating microorganisms are present in PCE-contaminated site in Korea, 2) if so, what kinds of microorganisms are present; 3) to what extent PCE is reductively dechlorinated. As a results in some PCE-contaminated aquifers in Korea other dechlorinating microorganisms but Dehalococcoides ethenogenes may be responsible for PCE dechlorination. More detailed molecular works are required to evaluate that different dechlorinating microorganisms would reside in Korea.

  • PDF

Monitoring Anaerobic Reductive Dechlorination of TCE by Biofilm-Type Culture in Continuous-Flow System (연속흐름반응조에서 바이오필름형태의 탈염소화 미생물에 의한 TCE분해 모니터링)

  • Park, Sunhwa;Han, Kyungjin;Hong, Uijeon;Ahn, Hongil;Kim, Namhee;Kim, Hyunkoo;Kim, Taeseung;Kim, Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.5
    • /
    • pp.49-55
    • /
    • 2012
  • A 1.28 L-batch reactor and continuous-flow stirred tank reactor (CFSTR) fed with formate and trichloroethene (TCE) were operated for 120 days and 56 days, respectively, to study the effect of formate as electron donor on anaerobic reductive dechlorination (ARD) of TCE to cis-1,2-dichloroethylene (c-DCE), vinyl chloride (VC), and ethylene (ETH). In batch reactor, injected 60 ${\mu}mol$ TCE was completely degraded in the presence of 20% hydrogen gas ($H_2$) in less than 8 days by anaerobic dechlorination mixed-culture (300 mg-soluble protein), Evanite Culture with ability to completely degrade tetrachloroethene (PCE) and -TCE to ETH under anaerobic conditions. Once the formate was used as electron donor instead of hydrogen gas in batch or chemostat system, the TCE-dechlorination rate decreased and acetate production rate increased. It indicates that the concentration of hydrogen produced in both systems is possibly more close to threshold for homoacetogenesis process. Soluble protein concentration of Evanite culture during the batch test increased from 300 mg to 688 mg for 120 days. Through the protein monitoring, we confirmed an increase of microbial population during the reactor operation. In CFSTR test, TCE was fed continuously at 9.9 ppm (75.38 ${\mu}mol/L$) and the influent formate feed concentration increased stepwise from 1.3 mmol/L to 14.3 mmol/L. Injected TCE was accumulated at 18 days of HRT, but TCE was completely degraded at 36 days of HRT without accumulation of the injected-TCE during the left of experiment period, getting $H_2$ from fermentative hydrogen production of injected formate. Although c-DCE was also accumulated for 23 days after beginning of CFSTR operation, it reached steady-state in the presence of excessive formate. We also evaluated microbial dynamic of the culture at different chemical state in the reactor by DGGE (denaturing gradient gel electrophoresis).