• Title/Summary/Keyword: anaerobic digestion process

Search Result 191, Processing Time 0.026 seconds

Sustainable anaerobic digestion of euphorbiaceae waste for biogas production: Effects of feedstock variation

  • Kamaruddin, Mohamad Anuar;Ismail, Norli;Fauzi, Noor Fadhilah;Alrozi, Rasyidah;Hanif, Mohamad Haziq;Norashiddin, Faris Aiman
    • Advances in environmental research
    • /
    • v.10 no.1
    • /
    • pp.87-103
    • /
    • 2021
  • Anaerobic digestion (AD) refers to the biological process which can convert organic substrates to biogas in the absence of oxygen. The aim of this study was to determine the capability of feedstock to produce biogas and to quantify the biogas yield from different feedstocks. A co-digestion approach was carried out in a continuous stirred tank reactor operated under mesophilic conditions and at a constant organic loading rate of 0.0756 g COD/ L.day, with a hydraulic retention time of 25 days. For comparison, mono-digestion was also included in the experimental work. 2 L working volumes were used throughout the experimental work. The seed culture was obtained from composting as substrate digestion. When the feedstock was added to seeding, the biogas started to emit after three days of retention time. The highest volume of biogas was observed when the seeding volume used for 1000mL. However, the lowest volume of biogas yield was obtained from both co-digestion reactors, with a value of 340 mL. For methane yield, the highest methane production rate was 0.16 L CH4/mg. The COD with yield was at 8.6% and the lowest was at 0.5%. The highest quantity of methane was obtained from a reactor of Euphorbiaceae peel with added seeding, while the lowest methane yield came from a reactor of Euphorbiaceae stems with added seeding. In this study, sodium bicarbonate (NaHCO3) was used as a buffering solution to correct the pH in the reactor if the reactor condition was found to be in a souring or acidic condition.

EPerformance of high-rate anaerobic sequencing batch reactor treating sewage sludge and food waste (연속 회분식 혐기성 공정을 이용한 하수슬러지와 음식물쓰레기의 혼합소화 거동 특성)

  • Kim, Hyun-Woo;Han, Sun-Kee;Shin, Hang-Sik
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.12 no.1
    • /
    • pp.75-83
    • /
    • 2004
  • Temperature-phased anaerobic digestion (TPAD), anaerobic sequencing batch reactor (ASBR), and co-digestion technologies were combined together in order to overcome low efficiencies of conventional anaerobic sewage sludge digestion processes. In the performance, TPAD-ASBR process showed high VS removal efficiency over 60% up to the organic loading rate (OLR) of 2.7 g VS/L/d. The first-stage of TPAD-ASBR and control system played a most significant role in VS destruction and methane production. Methane production rate (0.79 l $CH_4/L/d$) of the system was higher than that (0.59 l $CH_4/L/d$) of the control system. The substrate characteristics of the sewage sludge, such as low VS concentration (1.5%, w/w) and biodegradability, were properly improved by the addition of food waste as a co-substrate, leading to more efficient VS removal and methane production. With several track studies, it was revealed that the independent solid retention time (SRT) of those systems prevented untreated particles from outflowing and also, extended the retention time of the active biomass for further degradation. Consequently, it was confirmed that the sequencing batch operation of the TPAD process using co-substrate was a promising alternative for the recycling of sewage sludge with low VS content.

  • PDF

Comparison of Anaerobic and Aerobic Sequencing Batch Reactor System for Liquid Manure Treatment (액상가축분뇨처리에서 혐기성 및 호기성 연속 회분식 반응조 시스템의 비교 연구)

  • Hong, Ji-Hyung
    • Journal of Animal Environmental Science
    • /
    • v.14 no.2
    • /
    • pp.113-118
    • /
    • 2008
  • Sequencing batch operation consists of fill, react, settle and decant phases in the same reactor. Operation consists of anaerobic, anoxic and oxic (aerobic) phases when nutrient removal from the wastewater is desired. Since the same reactor is used for biological oxidation (or mixing) and sedimentation in aerobic and anaerobic SBR operations, capital and operating costs are lower than conventional activated sludge process and conventional anaerobic digestion process, respectively. Therefore, Aerobic SBR and Anaerobic SBR operations may be more advantageous far treatment of small volume animal wastewater in rural areas.

  • PDF

Determination and Variation of Core Bacterial Community in a Two-Stage Full-Scale Anaerobic Reactor Treating High-Strength Pharmaceutical Wastewater

  • Ma, Haijun;Ye, Lin;Hu, Haidong;Zhang, Lulu;Ding, Lili;Ren, Hongqiang
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.10
    • /
    • pp.1808-1819
    • /
    • 2017
  • Knowledge on the functional characteristics and temporal variation of anaerobic bacterial populations is important for better understanding of the microbial process of two-stage anaerobic reactors. However, owing to the high diversity of anaerobic bacteria, close attention should be prioritized to the frequently abundant bacteria that were defined as core bacteria and putatively functionally important. In this study, using MiSeq sequencing technology, the core bacterial community of 98 operational taxonomic units (OTUs) was determined in a two-stage upflow blanket filter reactor treating pharmaceutical wastewater. The core bacterial community accounted for 61.66% of the total sequences and accurately predicted the sample location in the principal coordinates analysis scatter plot as the total bacterial OTUs did. The core bacterial community in the first-stage (FS) and second-stage (SS) reactors were generally distinct, in that the FS core bacterial community was indicated to be more related to a higher-level fermentation process, and the SS core bacterial community contained more microbes in syntrophic cooperation with methanogens. Moreover, the different responses of the FS and SS core bacterial communities to the temperature shock and influent disturbance caused by solid contamination were fully investigated. Co-occurring analysis at the Order level implied that Bacteroidales, Selenomonadales, Anaerolineales, Syneristales, and Thermotogales might play key roles in anaerobic digestion due to their high abundance and tight correlation with other microbes. These findings advance our knowledge about the core bacterial community and its temporal variability for future comparative research and improvement of the two-stage anaerobic system operation.

High-rate Anaerobic Co-digestion of Food Waste and Sewage Sludge (음식물쓰레기와 하수슬러지의 고율 혐기성 통합소화)

  • Heo, Nam-Hyo;Chung, Sang-Soon
    • New & Renewable Energy
    • /
    • v.1 no.2 s.2
    • /
    • pp.60-72
    • /
    • 2005
  • The effect of alkaline pre-treatment on the solubilization of waste activated sludge(WAS) was investigated, and the biodegradability of WAS, pretreated WAS, [PWAS], food waste and two types of mixture were estimated by biochemical methane potential [BMP] test at $35^{\circ}C$. The biodegradability of PWAS and mixture waste were significantly improved due to the effect of alkaline hydrolysis of WAS. An alkaline pre-treatment was identified to be one of the useful pre-treatment for improving biodegradability of WAS and mixture waste. In high-rate anaerobic co-digestion system coordinate with an alkaline pre-treatment in process, the digesters were operated at the HRT of 5, 7, 10 and 13 days with a mixture of FW $50\%\;and\;PWAS\;50\%,\;$In term of $CH_4$ content, VS removal and specific methane production [SMP] which are the parameters in the performance of digester, the optimum operating condition was found to be a HRT of 7 days and a OLR of 4.20g/L-day with the highest SMP of 0.340 L $CH_4/g$ VS.

  • PDF

Conversion of organic residue from solid-state anaerobic digestion of livestock waste to produce the solid fuel through hydrothermal carbonization

  • Yang, Seung Kyu;Kim, Daegi;Han, Seong Kuk;Kim, Ho;Park, Seyong
    • Environmental Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.456-461
    • /
    • 2018
  • The solid-state anaerobic digestion (SS-AD) has promoted the development and application for biogas production from biomass which operate a high solid content feedstock, as higher than 15% of total solids. However, the digested byproduct of SS-AD can be used as a fertilizer or as solid fuel, but it has serious problems: high moisture content and poor dewaterability. The organic residue from SS-AD has to be improved to address these problems and to make it a useful alternative energy source. Hydrothermal carbonization was investigated for conversion of the organic residue from the SS-AD of livestock waste to solid fuels. The effects of hydrothermal carbonization were evaluated by varying the reaction temperatures within the range of $180-240^{\circ}C$. Hydrothermal carbonization increased the calorific value through the reduction of the hydrogen and oxygen contents of the solid fuel, in addition to its drying performance. Therefore, after the hydrothermal carbonization, the H/C and O/C atomic ratios decreased through the chemical conversion. Thermogravimatric analysis provided the changed combustion characteristics due to the improvement of the fuel properties. As a result, the hydrothermal carbonization process can be said to be an advantageous technology in terms of improving the properties of organic waste as a solid-recovered fuel product.

A Study on Increasing the Efficiency of Biogas Production using Mixed Sludge in an Improved Single-Phase Anaerobic Digestion Process (개량형 단상 혐기성 소화공정에서의 혼합슬러지를 이용한 바이오가스 생산효율 증대방안 연구)

  • Jung, Jong-Cheal;Chung, Jln-Do;Kim, San
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.588-597
    • /
    • 2016
  • In this study, we attempted to improve the biogas production efficiency by varying the mixing ratio of the mixed sludge of organic wastes in the improved single-phase anaerobic digestion process. The types of organic waste used in this study were raw sewage sludge, food wastewater leachate and livestock excretions. The biomethane potential was determined through the BMP test. The results showed that the biomethane potential of the livestock excretions was the highest at $1.55m^3CN4/kgVS$, and that the highest value of the composite sample, containing primary sludge, food waste leachate and livestock excretions at proportions of 50%, 30% and 20% respectively) was $0.43m^3CN4/kgVS$. On the other hand, the optimal mixture ratio of composite sludge in the demonstration plant was 68.5 (raw sludge) : 18.0 (food waste leachate) : 13.5 (livestock excretions), which was a somewhat different result from that obtained in the BMP test. This difference was attributed to the changes in the composite sludge properties and digester operating conditions, such as the retention time. The amount of biogas produced in the single-phase anaerobic digestion process was $2,514m^3/d$ with a methane content of 62.8%. Considering the value of $2,319m^3/d$ of biogas produced as its design capacity, it was considered that this process demonstrated the maximum capacity. Also, through this study, it was shown that, in the case of the anaerobic digestion process, the two-phase digestion process is better in terms of its stable tank operation and high efficiency, whereas the existing single-phase digestion process allows for the improvement of the digestion efficiency and performance.

Feasibility Studies on Anaerobic Sequencing Batch Retractor for Sludge Treatment

  • Duk Chang;Joo
    • Journal of Environmental Science International
    • /
    • v.1 no.2
    • /
    • pp.125-136
    • /
    • 1992
  • Digestion of a municipal wastewater sludge by the anaerobic sequencing batch reactor (ASBR) was investigated to evaluate the performance of the ASBR process at a critical condition of high-solids-content fined. The reactors were operated at an HRT of 10 days with an equivalent loading rate of 0.8-1.5 gVS/L/d at 35$^{\circ}C$ The main conclusions drawn from this study were as follows: 1. Digestion of a municipal wastewater sludge was possible using the ASBR in spite of high concentration of settleable solids in the sludge. The ASBRS with 3- and 4-day cycle period showed almost identical high digestion performances. 2. No adverse effect on digestion stability was observed In the ASBRS in spite of withdrawal and replenishment of 30% or 40% of liquid contents. A conventional anaerobic digester could be easily converted to the ASBR without any stability problem. 3. Flotation thickening occurred in thicken step of the ASBRS throughout steady state, and floating bed volume at the end of thicken period occupied about 70% of the working volume of the reactor Efficiency of flotation thickening in the ASBRS could be comparable to that of additional gravity thickening of a completely mixed digester. 4. Solids were accumulated rapidly in the ASBR during start-up period. Solids concentrations in the ASBRS were 2.6 times higher than that in the completely mixed control reactor at steady state. Dehydrogenase activity had a strong correlation with the solids concentration. Dehydrogenase activity of the digested flu형e in the ASBR was 2.9 times higher than that of the flu형e in the control reactor, and about 25 times higher than that of the subnatant in the ASBR. 5. Remarkable increase in equivalent gas production of 52% was observed at the ASBRS compared with the control reactor in spite of similar quality of clarified effluent from the ASBRS and control reactor. The increase in gas production from the ASBRS was believed to be combined results of accumulation of microorganisms, higher driving force applied, and additional long-term degradation of organics continuously accumulated.

  • PDF

A Study on Pre-treatment Facility for Foodwaste and Sewage Sludge Mixture (음식폐기물과 하수슬러지 병합처리를 위한 전처리시설에 관한 연구)

  • Kim, Jong-Oh;Lee, Chang-Ho;Kim, Ji-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.1
    • /
    • pp.84-89
    • /
    • 2003
  • The purpose of this study was to evaluate and improve the pre-treatment facility for foodwaste and sewage sludge mixture treatment. The process of foodwaste pre-treatment consists of storage, classification with crushing, and thickening. The effluent of sewage treatment facility was used as the diluting and washing water. The panicle size of foodwaste after pre-treatment was almost under 2mm, the mixture of foodwastes and sewage sludge showed an advantage to the anaerobic digestion. The amount of gas production increased from 0.8ton/day ($CH_4$ : 0.5ton/day) to 3.5ton/day ($CH_4$ : 2.3ton/day) after the anaerobic digestion of the foodwastes and sewage sludge mixture. The amount of sludge cake increased from 11.2ton/day to 21.2ton/day. Therefore, the proper operation of the foodwaste pre-treatment facility was contributed to the efficient anaerobic digestion of foodwaste and sewage sludge mixture treatment.

  • PDF

Effect of Waste Activated Sludge Mixing Ratio on the Biogas Production in Bioelectrochemical Anaerobic Digestion (생물전기화학혐기소화조를 이용한 바이오가스생산에서 폐활성슬러지 혼합비의 영향)

  • Chung, Jae-Woo;Lee, Myoung-Eun;Seo, Sun-Chul;Ahn, Yongtae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.4
    • /
    • pp.53-61
    • /
    • 2018
  • Anaerobic digestion (AD) is one of the most widely used process that can convert the organic fraction of waste activated sludge (WAS) into biogas. However, most researched actual methane yields of anaerobic digester (AD) on lab scale is lower than theoretical ones. Bioelectrochemical, anaerobic digester was used to increase methane yield from waste activated sludge. The influence of anaerobic digestion sludge and raw sludge mixing ratio (3:7, 5:5) on methane yield and organic matter removal efficiency were explored. As a result, when the mixing ratio of bioelectrochemical anaerobic sludge was 5:5 compared with 3:7, the highest methane yields were 294.2 mL $CH_4/L$ (0.63 times increase) and 52.5% (7.5% increase), the bioelectrochemical anaerobic digester(5:5) was more stable in the pH, t otal alkalinity and VFAs, respectively. These results showed that the increase in the mixing ratio of anaerobic digestion sludge was found to be effective for maintaining the stable performance of bioelectrochemical anaerobic digester.