• Title/Summary/Keyword: anaerobic bioreactor

Search Result 73, Processing Time 0.036 seconds

Development of Submerged Membrane Bioreactor for Biological Nutrient Removal on Municipal Wastewater and Analyzing the Effect of Chemical Cleaning on Microbial Activity (도시 하수에서의 생물학적 고도처리를 위한 MBR공정 개발 및 화학세정에 의한 미생물 활성도 영향 분석)

  • Park, Jong-Bu;Park, Seung-Kook;Hur, Hyung-Woo;Kang, Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.120-124
    • /
    • 2009
  • This study was performed to investigate the application of submerged membrane bioreactor (MBR) system for biological nutrient removal of municipal wastewater. MBR bioreactor consists of four reactors such as anaerobic, stabilization, anoxic and submerged membrane aerobic reactors with two internal recycles. The hydraulic retention time (HRT), sludge retention time (SRT) and flux were 6.2 hr, 34.1 days and $19.6L/m^2/hr$ (LMH), respectively. As a result of operation, the removal efficiency of $COD_{Cr}$, SS, TN and TP were 94.3%, 99.9%, 69.4%, and 74.6%, respectively. There was no significant effect of microbial activity after the maintenance cleaning using 200 mg/L of NaOCl. Membrane filtration for the treatment of municipal wastewater was performed for longer than 9 months without chemical recovery cleaning.

A Study on the Reaction Pathway of Cation and Volatile Acids in a Downflow Multistage Anaerobic Packed Bed Bioreactor (하향흐름 다단식 혐기성 고정층 반응기에서 양이온과 유기산의 반응 경로에 관한 연구)

  • 최석규;김용대;장인용
    • Journal of Environmental Health Sciences
    • /
    • v.18 no.1
    • /
    • pp.39-46
    • /
    • 1992
  • It has known that the intermediates formed in acid reactions occuring during anaerobic reactions for instance, acetic acid, propionic acid and butyric acid have significant effects or the formations of biogases(e. g. mainly CH$_{4}$ and CO$_{2}$). A study on the effects of these intermediates for the formations of biogases, however, is still on initial stage due to the type and structural problems of reactor. The primary objective of this reserch program is to provide a funadmantal mechanism of involved reactions using a modified downflow multistage pecked bed bioreactor. As a first stage of this reaserch program, the following theoretical principles was applied 1. Principle of electroneutrality where the molar concentrations of cation and anion in solution are the same. 2. Relationship between the concentration of bicarbonate anion and pH as follows [HCO$_{3}^{-}$]= $K_{H}P_{T}Y_{CO_{2}}10^{pH-K_{1}}$ Based upon the above two principles, a series of experimental works was conducted to elucidated the relationship between the concentration of CO$_{2}$ and the pH related to the concentrations of cations and anions.

  • PDF

Effect of Cross-flow Velocity and TMP on Membrane Fouling in Thermophilic Anaerobic Membrane Bioreactor Treating Food Waste Leachate (음식물 침출수를 처리하는 막결합 고온혐기성 소화시스템에서 교차여과와 막간압력이 파울링에 미치는 영향)

  • Kim, Young-O;Jun, Duk-Woo;Yoon, Seong-Kyu;Chang, Chung-Hee;Bae, Jae-Ho;Yoo, Kwan-Sun;Kim, Jeong-Hwan
    • Membrane Journal
    • /
    • v.21 no.4
    • /
    • pp.360-366
    • /
    • 2011
  • The effect of cross-flow velocity and transmembrane pressure (TMP) on membrane fouling was observed from pilot-scale operation of thermophilic anaerobic membrane bioreactor (AnMBR) treating food waste leachate. It was found that fouling rate was reduced significantly as cross-flow velocity increased at constant TMP mode of operation while this effectiveness was more pronounced at lower TMP. Higher TMP resulted in less permeable fouling layer possibly due to compressibility of foulant material on membrane surface. Particle sizes of membrane concentrate ranged from 10 to $100{\mu}m$, implying that shear-induced diffusion enhance back transport of these particle sizes away from the membrane effectively. From the continuous operation of AnMBR, it was confirmed that shear rate played an important role in the reduction of membrane fouling. Membrane autopsy works at the end of operation of AnMBR showed clearly that both organic and inorganic fouling were significant on membrane surface. Surface shear by cross-flow velocity was expected to be less effective to remove irreversible fouling which can be mainly caused by the adsorption of organic colloidal materials into membrane pores.

Evaluation of Vibrio Fischeri Toxicity for Biological Treatment of TNT-contaminated Soil (TNT 오염토양의 생물학적 처리에 대한 Vibrio Fischeri 독성 평가)

  • Park, Joon-Seok;In, Byung-Hoon;Namkoong, Wan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.204-214
    • /
    • 2013
  • This research was performed to evaluate Vibrio fischeri toxicity for TNT-contaminated soils treated by composting and slurry phase bioreactor, which were operated for 45 and 200 days, respectively. In case of composting, the GL value of acetone-added soil was 40, which was lower than th at of glucose-added soil after treatment. In case of slurry phase bioreactors under anaerobic, anaerobic/aerobic, and aerobic regimes, they showed the GL values of 6, 8, and 4 after treatment, respectively. It was evaluated that the toxicity of all slurry phase bioreactors was reduced significantly to detoxification. The relationships between GL value and the number of S. typhimurium in both composting and slurry phase bioreactor were developed as the first order equations with high correlation coefficient (r > 0.8890).

Performance Evaluation of Anaerobic Bioreactors and Effects of Ammonia on Anaerobic Digestion in Treating Swine Wastewaters

  • Lee, Gook-Hee;Seo, Jun-Won;Kim, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.3
    • /
    • pp.195-201
    • /
    • 2006
  • The operational characteristics of anaerobic bioreactors in treating swine wastewater were evaluated upto hydraulic retention time (HRT) of 1 day and organic loading rate (OLR) of $5.1kg-COD/m^3{\cdot}d$ for 200 days. The bioreactors were effective in treating swine wastewaters with COD removal efficiency of $78.9{\sim}81.5%$ and biogas generation of $0.39{\sim}0.59m^3/kg-COD_r$ at OLR of $1.1{\sim}2.2kg-COD/m^3{\cdot}d$. The two-stage ASBF anaerobic bioreactors was effective in treating different characteristics of swine wastewaters since they showed high and stable COD removal efficiency at high OLR due to effective retention of biomass by media and staging. The effects of ammonia on anaerobic digestion were investigated by operating two-stage ASBF reactors using swine wastewaters as influent without and with ammonia removal at HRT of $1{\sim}2$ days and OLR of $2.2{\sim}9.6kg-COD/m^3{\cdot}d$ for 250 days. The COD removal efficiency and biogas generation of two-stage ASBF reactors was decreased by increasing influent ammonia concentrations to 1,580 mg (T-N)/L with increasing OLR to $6.3kg-COD/m^3{\cdot}d$, while those were increased by maintaining influent ammonia concentrations below 340 mg (T-N)/L by MAP precipitation with increasing OLR to $9.6kg-COD/m^3{\cdot}d$. Initial inhibition of ammonia on anaerobic processes was observed at a concentration of 760 mg (T-N)/L and the COD removal efficiency and biogas generation dropped to 1/2 at ammonia concentration ranges of $1,540{\sim}1,870mg$ (T-N)/L. It is essential to remove ammonia in swine wastewaters to an initial inhibition level before anaerobic processes for the effective removal of COD.

Methane Production from the Mixture of Paperboard Sludge and Sewage Sludge in an Anaerobic Treatment Process (판지슬러지와 하수슬러지를 이용한 혐기성 처리 공정에서 메탄 생산)

  • Choi, Suk Soon;Lee, Hyun Min;Jeong, Tae-Young;Yeom, Sung Ho
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.228-231
    • /
    • 2012
  • In this work, the mixture of sewage sludge incubated in an anaerobic bioreactor for 35 days and paperboard sludge was treated in a batch anaerobic digester equipped with a ultrasonicator, and methane production during the treatment was investigated. The Soluble Chemical Oxygen Demand (SCOD) increased with increasing the amplitude of ultrasonicator, which help solubilizing paperboard sludge more effectively. The optimum amplitude of ultrasonicator for the enhancing methane productivity was found to be $142.5\;{\mu}m$ and the methane production amount increased as the anaerobic digestion period became longer. In addition, the anaerobic digestion was performed with various biomass (6000, 9000 and 12000 mg/L) and methane production increased with higher cell mass. These results will be used as valuable data to enhance the methane production from anaerobic digestion of the high concentration of organic wastes containing the paperboard sludge and sewage sludge.

Hydraulic Characteristics of Anaerobic Fluidized Bed Bioreactor (혐기성 유동상 반응기의 수리학적 특성)

  • Seok, Jong-Hyuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.90-96
    • /
    • 2018
  • Tracer experiments were carried out on two laboratory modes, "without media mode" and "with media mode", to examine the hydraulic characteristics of the anaerobic fluidized bed bioreactor (AFBR). For both configurations, a formula was derived for the hydraulics and data interpretation to obtain the actual characteristics of the reactor. The dispersion model is based on the assumption that carriers are non-reacting and the dispersion coefficient is constant. The model represents the one-dimensional unsteady-state concentration distribution of the non-reacting tracer in the reactors. The experimental results showed that the media increased the mixing conditions in the reactor considerably. For the reactor without media, in the range tested, the dispersion coefficient was at least an order of magnitude smaller than that of the reactor with media. Advective transport dominates and the flow pattern approaches the plug flow reactor (PFR) regime. The dispersion coefficient increased significantly as us, the superficial liquid velocity, was increased proportionally to 0.82cm/s. On the other hand, for the reactor with media, the flow pattern was in between a PFR and a completely mixed flow reactor (CMFR) regime, and the dispersion coefficient was saturated at us=0.41cm/s, remaining relatively constant, even at us=0.82cm/s. The dispersion coefficient depends strongly on the liquid Reynolds number (Re) or the particle Reynolds number (Rep) over the range tested.

Development of Influent Controlled Membrane Bioreactor for Biological Nutrient Removal on Municipal Wastewater (하수 고도처리를 위한 유로변경형 MBR공정의 개발)

  • Park, Jong-Bu;Shin, Kyung-Sook;Hur, Hyung-Woo;Kang, Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.7
    • /
    • pp.485-491
    • /
    • 2011
  • This study was performed to investigate the characteristics of nutrient removal of municipal wastewater in membrane bioreactor system. Membrane bioreactor consists of four reactors such as two intermittently anaerobic tanks, the oxic tank and the sludge solubilizaion tank with an internal recycle. The hydraulic retention time (HRT) and flux were 6.5 hours and $20.4L/m^2{\cdot}hr$ (LMH), respectively. The removal efficiency of $COD_{Cr}$, SS, TN and TP were 94.0%, 99.3%, 99.9%, 69.9%, and 66.9%, respectively. The estimated true biomass yield, specific denitrification rate (SDNR), specific nitrification rate (SNR), specific phosphorus release rate (SPRR) and specific phosphorus uptake rate (SPUR) were 0.34 kgVSS/kgBOD d, $0.067mgNO_3-N/mgVSS{\cdot}d$, $0.028mgNH_4-N/mgVSS{\cdot}d$, 16.0 mgP/gVSS d and 2.1 mgP/gVSS d, respectively. The contents of nitrogen and phosphorus of biomass were 8.9% and 3.5% on an average.

Characteristics of Food Waste Leachate Treatment in Thermophilic two Stage Anaerobic Digestion Combined UF Membrane (막결합형 고온 이상 혐기성 소화공정에서 음폐수 처리 특성)

  • Kim, Young-O;Jun, Duk-Woo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.3
    • /
    • pp.21-24
    • /
    • 2012
  • In this study, Anaerobic Membrane Bioreactor(AnMBR) treating food waste leachate was operated to investigate treatment efficiency of anaerobic process, operational parameters and production of biogas. AnMBR was operated under the condition of filtration type of inside-out mode. AnMBR was operated under the condition that range of permeate flux was from 15 to 20 LMH and range of transmembrane pressure was from 1 to $3 kgf/cm^2$. It was not good that AnMBR was performed under direct connection between anaerobic reactor and external UF module. so, this connection method changed to indirect connection using buffer tank was placed between anaerobic reactor and UF external module. TCOD and SCOD values were that influent were about 113 g/L, 62 g/L and effluent were 25 g/L, 12 g/L, respectively. also TCOD and SCOD removal efficiency were 77% and 81%, respectively. but after added UF process, COD and SCOD removal efficiency was increased to 93% and 86%, respectively.

Comparison of Biological Nutrient Removal Efficiencies on the Different Types of Membrane (분리막 종류에 따른 하수의 생물학적 고도처리 효율 비교 연구)

  • Park, Jong-Bu;Shin, Kyung-Sook;Hur, Hyung-Woo;Kang, Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.3
    • /
    • pp.322-328
    • /
    • 2011
  • This study was performed to investigate the characteristics of nutrient removal of municipal wastewater in the membrane bioreactor system with the different types of membrane. Membrane bioreactor consists of three reactors such as two intermittent anaerobic and the submerged membrane aerobic reactor with flat sheet and hollow fiber membrane, respectively. The removal efficiencies of $COD_{cr}$, BOD, SS, TN and TP on the flat sheet membrane bioreactor were 94.3%, 99.0%, 99.9%, 70.3% and 63.1%, respectively. In addition, The removal efficiencies of $COD_{cr}$, BOD, SS, TN and TP on the hollow fiber membrane bioreactor were 94.0%, 99.3%, 99.9%, 69.9% and 66.9%, respectively. The estimated true biomass yield, specific denitrification rate (SDNR), specific nitrification rate (SNR) and phosphorus removal content on the flat sheet membrane bioreactor were $0.33kgVSS/kgBOD{\cdot}d$, $0.043mgNO_3-N/mgVSS{\cdot}d$, $0.031mgNH_4-N/mgVSS{\cdot}d$, and 0.144 kgP/d, respectively. In addition, the estimated true biomass yield, specific denitrification rate (SDNR), specific nitrification rate (SNR) and phosphorus removal content on the hollow fiber membrane bioreactor were $0.30kgVSS/kgBOD{\cdot}d$, $0.067mgNO_3-N/mgVSS{\cdot}d$, $0.028mgNH_4-N/mgVSS{\cdot}d$, and 0.121 kgP/d, respectively. There was little difference between the flat sheet and hollow fiber on the nutrient removal efficiencies except SNR and SDNR. These differences between them were caused by the air demand to prevent the membrane fouling. The flux and oxygen demand for air scouring were $19.0L/m^2/hr$ and $2.28m^3/min$ for the flat sheet membrane, and $20.7L/m^2/hr$ and $1.77m^3/min$ for the hollow fiber membrane on an average.