• Title/Summary/Keyword: anaerobic bed

Search Result 88, Processing Time 0.021 seconds

A Study on the Mixed-Food Wastewater Treatment in an Anaerobic Packed Bed Reactor and Sludge Bed Reactor (혐기성 고정상반응기와 슬러지 Bed반응기에서 혼합-식품폐수처리에 관한 연구)

  • 안재동;김재우;장인용
    • Journal of Environmental Health Sciences
    • /
    • v.19 no.4
    • /
    • pp.38-43
    • /
    • 1993
  • The characteristics of food wastewater treatment in an anaerobic packed bed reactor (APBR) with polyurethane as a packing material and sludge bed reactor (ASBR) was studied. The reactor of 9cm-ID, 150cm-height was fed in a continuous mode from bottom of reactor. For the purpose of constant temperature of reactor, water jacket was installed. The used packing materials was polyurethane sponge foam. Methane which was produced by decomposed organics collected at the top of the reactor for using as a fuel. The substrates used were synthetic, mixed and food wastewater. For the acclimatization of microorganisms, mixed wastewater was used. The major analyses were gas production, COD, pH and volatile acids. Based upon the completed works, the results are as follows: When food wastewater was fed the quantity of produced gas was less than that of synthetic wastewater, but food process saw higher methane content than synthetic process. As well as COD removal efficiency of food process reached at about 85%. In aspect of effluent volatile acid, food process showed low concentration of below 500 mg/l, therefore anaerobic reaction stabled. Conclusively food wastewater used can be digested by anaerobic treatment, especially anaerobic packed bed reactor showed 82% of COD removal, 75% of methane content, 10 l of gas production, and anaerobic sludge bed reactor did 79% of COD removal, 75% of methane content, 81 of gas production at 4 kgCOD/m$^3$day, 36$\circ$C.

  • PDF

Biological Treatemnt of Dye Wastewater Using an Anaerobic-Aerobic System (혐기-호기 공정을 이용한 염료페수의 생물학적 처리)

  • 박영식;문정현;안갑환
    • Journal of Environmental Science International
    • /
    • v.11 no.6
    • /
    • pp.569-576
    • /
    • 2002
  • Anaerobic/aerobic reactor system was used to treat a synthetic wastewater with glucose as carbon sources(0.38~2.29 kg COD/m3.day) and Acid Red 14(1.05 "24.00 g Acid Red 141m3.day, color degree of 570 ~ 1710). COD removal efficiency by the anaerobic stage in operation period were above 90 % organic loading rate of 0.38 ~ 2.29 kg COD/m3.day(except, adaptation period) and the removal efficiency of the whole system were above 96 %. The decolorization of the Acid Red 14 was through the alteration of the dye structure(or cleavage of the Azo bond) during the anaerobic treatment. In the A/A system, the anaerobic stage played an essential role in removing both color and COD. In addition it also improves biodegradability of dye f3r further aerobic treatment. After operation, average MLSS concentration of anaerobic sludge reactor, anaerobic fixed-bed reactor and aerobic fixed-bed reactor were 17100mg/L, 20000mg/L, and 10000mg/L, respectively.

A Study on the characteristics of the bed porosity and organic wastewater treatment with the circulation velocity in the anaerobic fluidized bed biofilm reactorA Study on the characteristics of the bed porosity and organic wastewater treatment with the circulation velocity in the anaerobic fluidized bed biofilm reactor (혐기성 유동층 생물막 반응기에서 순환유속 증가에 따른 층공극률 및 유기성 폐수 처리특성에 관한 연구)

  • 김재우;안재동
    • Journal of environmental and Sanitary engineering
    • /
    • v.10 no.3
    • /
    • pp.1.1-15
    • /
    • 1995
  • This study was performed to estimate the characteristics of the organic wastewater treatment and bed porosity with the circulation velocity in the anaerobic fluidized bed biofilm reactor. The results were as follows; 1. With Increasing circulation velocity the fluidized bed expanded smooth and with increasing initial particle volume the fluidized bed was increased. 2. With increasing circulation velocity the gasproduction was increased, but at 1.Scnt/sec of circulation velocity AFBBR showed the highest value of methane production rate per removed COD. Therefore, for the purpose of economical operation in AFBBR, 1.5cm/sec of circulation velocity was optimum 3. The microorganisms were colonized in the crevice of the media. 4. On fluidization, COD, VA,55 profiles with the reactor height were not showed. In conclusion, AFBBR suit the organic wastewater treatment's purpose, and at 1.5cm/sec of circulation velocity the system is economical in an energy Point of view.

  • PDF

A Study on the Anaerobic Treatment of the Phenol Wastewater with the Sludge Blanket-Packed Bed Reactor (슬러지-고정상 반응기에서 페놀폐수의 혐기성 처리에 관한 연구)

  • 안재동;박동일;김재우;장인용
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.3
    • /
    • pp.72-80
    • /
    • 1996
  • This study was carried to investigate the biodegradability of phenol wastewater in the sluge blanket-packed bed reactor(SBPBR). The reactor consisted of two regions. The lower region was a sludge blanket of 0.5 m height and the upper region was a packed-bed. The phenol and COD concentration of the effluent, the gas production and the composition of gas were measured to determine the performance of the anaerobic wastewater treatment system as the phenol concentration of the influent was increased from 600 to 1800 mg/l. Stable biodegradation of phenol wastewater could be achieved with the anaerobic treatment system from 600 to 1200 mg/l of the influent phenol concentration. But the SBPBR system was getting more serious at 1800 mg/l of influent phenol concentration. At the steady state of the influent phenol concentration of 600-1200 mg/l, the treatment performance showed the phenol removal efficiency of 94.5~96.3%, the COD removal efficiency of 93.3~96% and the gas production of 4.94~9.64 l/day.

  • PDF

Optimum Depth and Volume Ratio of Aerobic to Anaerobic Bed for Development of Small-Scale Sewage Treatment Apparatus by Natural Purification Method (자연정화공법에 의한 소형 하수처리장치 개발을 위한 최적 깊이 및 호기.혐기 비율)

  • Seo, Dong-Cheol;Park, Mi-Ryoung;Kwak, Nae-Woon;Hwang, Ha-Na;Lee, Hong-Jae;Cho, Ju-Sik;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.1
    • /
    • pp.14-24
    • /
    • 2006
  • To develop small-scale sewage treatment apparatus for detached house of agricultural village, a small-scale sewage treatment apparatus by natural purification method that consisted of aerobic and anaerobic bed was constructed. To reduce the area of a sewage treatment apparatus, four different fitter media were used and each filter medium was coarse sand, broken stone, steel slag, and mixed fitter media (coarse sand : broken stone : steel slag = 1:1:1). The efficiency of sewage treatment according to the depth of aerobic and anaerobic bed and the volume ratio of aerobic to anaerobic bed were investigated in small-scale sewage treatment apparatus. The removal rate of pollutants according to the depth of aerobic and anaerobic bed in small-scale sewage treatment apparatus was high in the order of 50 cm < 70 cm < 90 cm. The removal rate of pollutants according to the ratio of aerobic to anaerobic bed in small-scale sewage treatment apparatus was high in the order of 1:1 < 1:2 $\fallingdotseq$ 1:3. Under the optimum conditions, removal rate of BOD, COD, SS, T-N and T-P were $98{\sim}99,\;95{\sim}97,\;99,\;65{\sim}66\;and\;96{\sim}99%$ respectively, in small-scale sewage treatment apparatus.

A Study on the Kinetics and the Biogas Formation for Organic Wastewater Treatment in Anaerobic Fluidized-Bed Bioreactor and New Model AFPBBR (혐기성 유동층 생물 반응기와 새로운 모델의 AFPBBR에서 유기성폐수 처리시 Biogas 생성과 반응상수에 관한 연구)

  • 김재우;장인용
    • Journal of Environmental Health Sciences
    • /
    • v.19 no.2
    • /
    • pp.23-33
    • /
    • 1993
  • The anaerobic digestion of organic synthetic wastewater in anaerobic fluidized bed bioreactor (AFBBR) and anaerobic fluidized packed bed bioreactor (AFPBBR) was studied. This study was conducted to evaluate efficiency and reliability of two reactor. Experiment was performed to find the effect of upflow rate with AFBBR and the height of packed bed with AFPBBR. As a result, this program obtained several conclusion. These are given as follows: As applied the upflow rate increased in AFBBR the produced volume of biogas increased, while the gas production and COD removal decreased at above 0.3 m$^3$/h. When a upflow rate is 0.4 m$^3$/h in AFBBR the volatile suspended solid (VSS) became significantly increased. At an organic loading rate from 0.1 to 0.4 of upflow rate in AFBBR, the methane yield was 1.5584 m$^3$CH$_4$/kgCOD removed, and the observed cell yield coefficient was 0.0933 gVSS/gCOD. In case of AFPBBR, the results showed also that 20 cm of height of packed bed was superior to other in the aspect ot biogas production, the content of methane and COD removal. At 20 cm of height, the profile of microorganisms was stable, while at 30 cm the VSS of effluent became higher than AFBBR. Though COD removal of AFPBBR increased with packed bed, COD removal deteriorate with over packing because the loss of pressure became higher in the reactor. At an organic loading rate from 20 to 40 cm of packed bed in-AFPBBR, the methane yield was 2.5649 m$^3$CH$_4$/kgCOD removed, and the observed cell yield coefficient was 0.0506 gVSS/gCOD. Based upon the results obtained, it is suggested that AFBBR and AFPBBR is the most effective conditions at 0.3 m3/h of upflow rate, the 20cm of packed bed, respectively. The rate constant are summarized as follow:

  • PDF

Utilization of Compost Bed for the Treatment of Anaerobic Digestion Wastewater (퇴비단을 이용한 혐기소화폐액의 액비화에 대한 연구)

  • Han, Deug-Woo;Lee, Dong-Hyun;Jeong, Kwang-Hwa;Kim, Jung-Gon;Choi, Dong-Yoon;Kwag, Jung-Hoon
    • Journal of Animal Environmental Science
    • /
    • v.20 no.2
    • /
    • pp.69-76
    • /
    • 2014
  • This study was aimed at investigating a filtration bed system for the production of liquid fertilizer using wastewater generated after anaerobic digestion of animal manure. Slurry, Compost, & Biofiltration-Methane System, designed by Korean National Institute of Animal Science, is now a standard method to recycle anaerobic digestion wastewater. However, currently provided protocol to run the system needs continuous upgrades as the system is relatively new and can be more cost-effective if few adjustments are made. In this study, we tried to enhance the capability of the system to process anaerobic digestion wastewater by replacing the bed materials with the cheaper one, and determining the time point of operation from which filtrates can be utilized for fertilization.

A Comparative Study on Treatment Efficiencies by Anaerobic Packed and Fluidized-bed Biofilm of Livestock Wastewater (축산폐수의 혐기성 충전층과 유동층 생물막법에 의한 처리효율의 비교연구)

  • 김은호;박현건;장성호
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.1
    • /
    • pp.54-61
    • /
    • 1998
  • This study was conducted in order to evaluate the treatment efficiencies of anaerobic packed and fluidized-bed biofilm and to investigate applicability in treating livestock wastewater. Biocarbonate alkalinity(BA) and volatile fatty acid(VFA) were about 3,230-3,270 mg/l, 3,790-3,126 mg/l(as CaCO$_3$) and 224-402 mg/l, 141-387 mg/l(as CH$_3$COOH), and VFA/BA ratio was about 0.069~0.12, 0.045-0.12 in packed and fluidized-bed biofilm. When COD loading rate was 6.0 kg COD/$m^3\cdot$ day in packed and fluidized-bed biofilm, methane gas production were 3.23 l/day and 4.38 l/day, respectively. In the same COD loading rate, methane gas production volumes per kg COD removal were 0.25 m$^3$ CH$_4$/kg COD$_{rm}$ and $0.28 m^3 CH_4/kg COD^{rm}$, respectively. At this time, it could be estimated that fluidized-bed biofilm was more high. In case of HRT 0.94 day(6.0 kg COD/$m^3\cdot$ day) and 11 day(0.5 kg COD/$m^3\cdot$ day), packed-bed biofilm showed 59% and 81% COD removal efficiency, respectively. While fluidized-bed biofilm showed 72% and 85% removal efficiency, respectively. It was showed that fluidized-bed biofilm was more efficient. Packed-bed biofilm was higher than fluidized in treatment efficiencies of organic matters, but required continuous treatment using combined system, because it was very exceeded over an environmental standard solidified from '96 year. In operating fluidized-bed biofilm, if farm house consider high power cost according to high circulation ratio in an economic point of view, it would have an effect that farm house use packed-bed biofilm as combined system in treating livestock wastewater.

  • PDF

Role of Crossflow Module Media in Gas-liquid-solid Separation and Biomass Retention in Hybrid Anaerobic Filter (교차흐름식 모듈 충전 hybrid 혐기성여상의 기·액·고 분리능 및 슬러지보유능)

  • Chang, Duk;Chae, Hee-Wang;Bae, Hyung-Suk;Chung, In;Han, Sang-Bae;Hur, Joon-Moo;Hong, Ki-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.6
    • /
    • pp.769-778
    • /
    • 2009
  • Performances and internal behaviors of the upflow hybrid anaerobic filters treating a dairy wastewater were analyzed to identify the functions and roles of the modular crossflow media and sludge bed layer and to discover their interrelationship in the filter. The media could perform independent biological and physical separation role without buildup of sludge bed, while the role of sludge bed was dependent on the function of the media. The filter packed with the crossflow media did not necessarily require the formation of sludge bed when treating a dairy wastewater. Biological contribution of the media was controlled by that of biologically active sludge bed complementing mutually each other. The gas-liquid-solid separation capability of the media was indispensible to ensure the active biological role of sludge bed, since sludge bed buildup without the media had no independently effective biological function. It was believed that the filter in itself could also function as a selector for physical gas-liquid-solid separation resulting in selectively concentrating particles with superior settleability in sludge bed. The sludge bed in the filter played a key role in the physical solids capture from influent as well as biological organics removal.

Slaughterhouse wastewater treatment in a bamboo ring anaerobic fixed-bed reactor

  • Tritt, Wolfgang P.;Kang, Ho
    • Environmental Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.70-75
    • /
    • 2018
  • A pilot scale anaerobic fixed-bed with a reactor volume of $2.8m^3$ was built to treat slaughterhouse wastewater. Bamboo rings were chosen as support media mainly because of their cheaper price in underdeveloped countries. Even with their lower porosity and specific surface, the reactor performance showed a maximum 95% COD removal efficiency at an organic loading rate (OLR) of $1kg\;COD/m^3-d$ with its corresponding hydraulic retention time (HRT) of 7.5 d. At a higher OLR of $4.0kg\;COD/m^3-d$, the COD removal efficiency of 75% was achieved with an HRT of 2 d. No big difference in COD removal efficiencies was found between the reactors operated in both upflow and downflow modes. Their operational behavior and effluent characteristics were similar. The effluent COD/TKN ratio of 6.67 at an OLR of $4.0kg\;COD/m^3-d$ was only marginal acceptable range for a subsequent biological denitrification process. Otherwise carbon supplementation is required at a lower OLR.