• Title/Summary/Keyword: an elliptical motion

Search Result 43, Processing Time 0.022 seconds

Design and analysis of omni-directional linear piezoelectric actuator (전방향성 선형 압전 액추에이터의 설계와 분석)

  • Jung, Woo-Suk;Kang, Chong-Yun;Kim, Jeong-Do;Paik, Dong-Soo;Cho, Bong-Hee;Kim, Young-Ho;Yoon, Seok-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.185-189
    • /
    • 2009
  • In this paper, we present design and analysis of the omni-directional linear piezoelectric actuator which was consisted of one actuator using the half-wave vibrator. Through calculating vibration speeds on each sector of the actuator, the displacement of contact point of the actuator is theoretically confirmed to be about 33 nm. To confirm an applicable possibility of omni-directional linear piezoelectric actuator, elliptical motion for linear movement, displacement of the tip, changing directions and admittance characteristics are simulated by ATILA. Compared with theoretical result, we obtained similar data with displacement of 32.5 nm at contact point. And then the actuator is simulated elliptical trajectories for linear motions and changing directions according to combination of input signal.

Characteristics of Linear Ultrasonic Motor Using $L_1-B_4$ Mode Unimorph-TyPe and Bimorph-Type Vibrator ($L_1-B_4$ 모드 유니몰프형과 바이몰프형 진동자를 이용한 선형 초음파 모터의 특성)

  • Kim, Beom-Jin;Jeong, Dong-Seok;Kim, Tae-Yeol;Park, Tae-Gon;Kim, Myeong-Ho;Uchino, Kenji
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.9
    • /
    • pp.427-433
    • /
    • 2001
  • A linear ultrasonic motor was designed by a combination of the first longitudinal and fourth bending mode, and the motor consisted of a straight aluminum alloys bar bonded with a piezoelectric ceramic element as a driving element. That is,$L_1-B_4$ linear ultrasonic motor can be constructed by a multi-mode vibrator of longitudinal and bending modes. Linear ultrasonic motors are based on an elliptical motion on the surface elastic body, such as bar or plates. In general, the natural resonance frequency of the stator is used as a driving frequency of the motor which provides a large elliptical motion. The corresponding eigenmode of one resonance frequency can be excited twice at the same time with a Phase shift of 90 degrees in space and time. And the rotation can be reversed by changing the phase between the two signals from sin$\omega$t to cos$\omega$t. Moreover, the tangential force pushes the slider(rotor) and, therefore, determines the thrust and speed of the motor. The experimental results of fabrication motors, bimorph-tyPe motor showed more excellent than unimorph-type. The maximum speed of TBL-200, TBL-300, TBL-400, TBL -220, TBL-310 and TBL-420 motors were 0.12, 0.37, 0.39, 0.14, 0.55 and $0.60ms6{-1}$, respectively. And the efficiency were reported 1.15, 7.9, 6.6, 2.36, 10.1 and 16.5%, respectively. That time, output thrust of the motor was a strong(1~2N) and the weight of stator was a lightness(5~7g).

  • PDF

Study of a vibrating propulsion system for marine vessels: Evaluation of the efficiency for a boat 13 m long

  • Muscia, Roberto
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.2
    • /
    • pp.201-211
    • /
    • 2018
  • This paper illustrates recent advancements relative to a non-conventional propulsion system for boats and is based on two previous papers of the author presented at a conference (see Muscia, 2015a,b). The system does not consider propellers and utilizes the vibration generated by two or more pairs of counter rotating masses. The resultant of the centrifugal forces applies an alternate thrust to the hull that oscillates forward and backward along the longitudinal axis of the boat. The different hydrodynamic drag forces that oppose to the oscillation produce a prevalently forward motion of the vessel. The vibration that causes the motion can be suitably defined to maximize the forward displacement and the efficiency propulsion of the system. This result is obtained by using elliptical gears to rotate the counter rotating masses. The computation of the propulsion efficiency is based on a suitable physical mathematical model. Correlations between numerical experiments on models and possible full scale application are discussed. Some remarks in relation to practical applications and critical issues of the propulsive solution are illustrated. The results have been obtained with reference to a CAD model of a real boat already manufactured whose length is approximately equal to 13 m.

LINEAR STABILITY OF TRIANGULAR EQUILIBRIUM POINTS IN THE PHOTOGRAVITATIONAL RESTRICTED THREE BODY PROBLEM WITH TRIAXIAL RIGID BODIES, WITH THE BIGGER ONE AN OBLATE SPHEROID AND SOURCE OF RADIATION

  • KUMAR, AVDHESH;ISHWAR, B.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.297-299
    • /
    • 2015
  • In this paper we have examined the linear stability of triangular equilibrium points in the photogravitational restricted three body problem when both primaries are triaxial rigid bodies, the bigger one an oblate spheroid and source of radiation. The orbits about the Lagrangian equilibrium points are important for scientific investigation. A number of space missions have been completed and some are being proposed by various space agencies. We analyze the periodic motion in the neighbourhood of the Lagrangian equilibrium points as a function of the value of the mass parameter. Periodic orbits of an infinitesimal mass in the vicinity of the equilibrium points are studied analytically and numerically. The linear stability of triangular equilibrium points in the photogravitational restricted three body problem with Poynting-Robertson drag when both primaries are oblate spheroids has been examined by A. Kumar (2007). We have found the equations of motion and triangular equilibrium points for our problem. With the help of the characteristic equation we have discussed stability conditions. Finally, triangular equilibrium points are stable in the linear sense. It is further seen that the triangular points have long or short periodic elliptical orbits in the same range of ${\mu}$.

The Shape and Virial Theorem of a Star Cluster in the Galactic Tidal Force Field

  • Lee, See-Woo;Rood, Herbert J.
    • Journal of The Korean Astronomical Society
    • /
    • v.2 no.1
    • /
    • pp.1-9
    • /
    • 1969
  • On the instantaneous tidal relaxation approximation, formulae are derived for the ellipticities and virial theorem of a slightly flattened homogeneous rotating cluster (the largest axis of the cluster is directed towards the Galactic center), in terms of the Galactic tidal force and the characteristic intrinsic plus orbital angular velocity. The expression for a purely tidally-determined ellipticity is identical to that for an incompressible fluid body of uniform density. Orbital motion generally contributes significantly to the shape of the cluster. The virial theorem is identical to that for an isolated cluster except that the gravitational potential energy is multiplied by (1-${\chi}$), where ${\chi}$ is a positive tidal correction term. To obtain the actual mass of a cluster, the virial theorem mass based on an isolated cluster should be multiplied by the factor 1/(1-${\chi}$). The formulae are applied to open star clusters, the globular cluster ${\omega}$ Centauri, and dwarf elliptical galaxies in the Local Group.

  • PDF

Numerical Experiment on the Ulleung Eddy due to the Variation of the Tsushima Current in the East Sea

  • KIM Soon Young;LEE Jae Chul;LEE Hyong Sun;SHIM Tae Bo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.6
    • /
    • pp.1033-1043
    • /
    • 1997
  • In order to understand the generation mechanism of the Ulleung Eddy, we carried out a series of numerical experiments using the nonlinear 11/2 - layer model allowing the inflow of the Tsushima Current. According to our numerical results, the Ulleung Eddy was generated due to the inflow variations of the Tsushima Current. Its inflow through the Korea Strait was deflected to the east due to the Coriolis force and the nonlinear self advection. Thus, an anticyclonic motion was formed at the north of the Korea Strait. The inflow became a coastal boundary current, and finally flowed out model ocean through the eastern exit. When the speed of inflow decreased slowly, the eddy- like motion at the north of the Korea Strait changed into an enclosed anticyclonic eddy of about 200 km in diameter. The Ulleung Eddy became circular shape due to the nonlinear self advection, then changed into elliptical shape in meridional direction because of the blocking effect of the western boundary.

  • PDF

An analysis on the robotic impact geometry with task velocity constraint (속도 제한에 의한 충격량 도형에 관한 연구)

  • Lee, Ji-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.8
    • /
    • pp.955-960
    • /
    • 1999
  • This paper describes the effect of impact configurations on a single robot manipulator. The effect of different configurations of kinematically redundant arms on impact forces at their end effectors during contact with the environment is investigated. Instead of the well-known impact ellipsoid, I propose an analytic method on the geometric configuration of the impact directly from the mathematical definition. By calculating the length along the specified motion direction and volume of the geometry, we can determine the characteristics of robot configurations in terms of both the impact along the specified direction and the ability of the robot withstanding the impact. Simulations of various impact configurations are discussed at the end of this paper.

  • PDF

Lambda shape multiway moving ultrasonic linear motor (람다형 다방향 초음파 선형 모터)

  • Do, Young-Soo;Nam, Hyo-Duk;Kim, Young-Duk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.263-265
    • /
    • 2007
  • An ultrasonic linear motor using lambda shape vibrators has been designed and fabricated. The multiway ultrasonic motors mainly consist of an lambda shape ultrasonic vibrator which generates elliptical motions in beat. The lambda shape ultrasonic linear motor use longitudinal and bending vibration mode. In order to high precision motion control and multiway moving, piezoceramics were adhered to lambda shape brass elastic material. The finite element method was used to optimize dimension of ultrasonic vibrator and direction of vibratory displacement. As a result of estimating the characteristics of the ultrasonic linear motor, The results have shown that the lambda shape ultrasonic linear motor can be moved multiwav by using the phase control. Close agreement between the FEM results and experimental results obtained for the lambda shape ultrasonic linear motor.

  • PDF

A Study on the Characteristics of Linear Ultrasonic Motor Using Langevin type Piezoelectic Transducer (란쥬반형 압전 진동자를 이용한 선형 초음파 모터의 특성연구)

  • Choi, Myeong-Il;Park, Tae-Gone;Kim, Myeong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.137-139
    • /
    • 2003
  • Transducer for ultrasonic linear motor with the symmetric and anti-symmetric modes was studied. The ultrasonic linear motor consists of two Langevin type piezoelectric vibrators that cross at right angles with each other in tip. In order to excite symmetric and anti-symmetric modes, the transducer must have a phase shift of 90 degree in space and time. Therefore, the tip of transducer moves on an elliptical motion. In this paper, the finite element analysis was used to optimize dimension and displacement of the transducer The ultrasonic motor was fabricated using the simulated result and the driving characteristics were measured. No-load velocity was 0.28[m/s] and the maximum efficiency was 30[%] in resonance frequency.

  • PDF

Driving Characteristic of Ultrasonic Linear Motor With V-type (V-형 선형 초음파 모터의 구동 특성)

  • Jeong, Seong-Su;Park, Tae-Gone
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.5
    • /
    • pp.425-429
    • /
    • 2007
  • A linear ultrasonic motor was designed by a combination of the longitudinal and bending mode. linear ultrasonic motors are based on an elliptical motion on the surface of elastic body, such as bar or plates. The corresponding eigen-mode of one resonance frequency can be excited twice at the same time with a phase shift of 90 degrees in space and time. That is excite symmetric and anti-symmetric modes. Then it determines the thrust and speed of the motor. Linear ultrasonic motors are investigated experimentally in according to be fabricated a general classification to motor structure and material characteristic. There was the first to simulate as use of finite element analysis ANSYS 9.0. The AL-T2W8-ARM14-LEG18-ANGLE80 motor has a maxim efficiency 18 % under the speed 0.14 m/s, thrust 345 gf and preload 280 gf, operating frequency is 57.6 kHz.