• Title/Summary/Keyword: an air core

Search Result 315, Processing Time 0.028 seconds

An Experimental Study on Flow Angle with Swirl in a Horizontal Circular Tube (수평 원통 관에서 선회를 동반한 유동각에 대한 실험적 연구)

  • Chang, Tae-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.4
    • /
    • pp.82-87
    • /
    • 2003
  • Flow angle with Swirl in a horizontal circular tube and a cylindrical annuli were experimentally studied for its visualization. This present investigation deals with flow angle, flow visualization studies and vortex core by using oil smoke and a hot wire anemometer for Re = 40,000 and 50000 at X/D = 41, 59 and 71 in a horizontal circular tube. In the swirl air flow, a vortex core was formed at high swirl intensity along the test tube. The flow angle and the vortex core depended on the swirl intensity along the test tube. The results of flow angles with swirl measured by flow visualization and hot wire reasonably agree with those of Sparrow One of the primary objectives of this research was to measure the flow angle with swirl in a cylindrical annuli along the test tube for different Reynolds numbers. The Reynolds number for these measurements ranged from 60,000 to 100,000 with L/D = a to 4.

  • PDF

The Lubrication Characteristics of Rotary Compressor for Refrigeration & Air-Conditioning (Part I ; The analysis of rolling piston behavior) (냉동 공조용 로터리 콤프레서의 윤활 특성 제1보 : 롤링 피스톤의 거동해석)

  • 조인성;오석형;정재연
    • Tribology and Lubricants
    • /
    • v.12 no.4
    • /
    • pp.43-51
    • /
    • 1996
  • Rapid increase of refrigeration & air-conditioning system (r & a system) in modem industries brings attention to the urgency of research & development as a core technology in the area. And it is required to the compatibility problem of r & a system to alternative refrigerant for the protection of environment. Then, it is requested to study the lubrication characteristics of refrigerant compressor which is the core technology in the r & a system. The study of lubrication characteristics in the critical sliding component is essential for the design of refrigerant compressor. Therefore, theoretical investigation of the lubrication characteristics of rotary compressor for r & a system is studied. The Runge-Kutta method is used for the analysis of the behavior of rolling piston in the rotary compressor. The results show that the rotating speed of shaft and the discharge pressure have an important effect upon the angular velocity of the rolling piston. This results give important basic data for the further lubrication analysis and design of the rotary compressor.

SIP based Tunable BPF for UHF TV Tuner Applications (UHF대역 TV 튜너에 적용을 위한 가변형 대역통과필터)

  • Lee, Tae-C.;Park, Jae-Y.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.2127-2130
    • /
    • 2008
  • In this paper, a tunable bandpass filter with mutual inductive coupling circuits is newly designed and demonstrated for UHF TV tuner ranged from Ch.14(473MHz) to Ch.69(803MHz) applications. Conventional HF tuning circuit with an electromagnetic bandpass filter has several problems such as large size, high volume and high cost, since the electromagnetic filter is comprised of several passive components and air core inductors to be assembled and controlled manually. To address these obstacles, peaking chip inductor was newly applied for constructing the mutual inductive coupling circuit. The proposed circuit was newly and optimally designed, since the chip inductor showed lower components Q-value than the air core inductor. A varactor diode has been also used to fabricate the proposed tunable bandpass filter for RF tuning circuit. The fabricated tunable filter exhibited low insertion loss of approximately -3dB, high return loss of below -10dB, and large tuning bandwidth of 330MHz.

Dynamic Modeling of an Fine Positioner Using Magnetic Levitation (자기 부상 방식 미세 운동 기구의 동적 모델링)

  • Jeong, Gwang-Seok;Baek, Yun-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1166-1174
    • /
    • 2000
  • In this paper, we introduce a positioner based on magnetic levitation to eliminate the friction which is the most severe effect to limit high resolution on the micro level. Differently from existing electromagnetic device, the proposed positioner consists of air core solenoid and permanent magnet. Although the combination produces small magnetic force, it is suitable for realizing micro motion repeatedly without the accumulation of error because there is no hysteresis caused by ferromagnetic materials, no eddy current loss, no flux saturation. First, the approximate modeling of stiffness and damping effects between the magnetic elements is made and verified experimentally. Then, we have formulated the dynamic equation of one d.o.f magnetic levitation positioner using linear perturbation method and discussed the necessity of optimization for the chief design parameters to maximize the stability performance.

Ultrasonic Noises in Power Transformer (전력용 변압기에서의 초음파 노이즈)

  • Kweon, D.J.;Jung, G.J.;Choi, I.H.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2305-2307
    • /
    • 1999
  • Partial discharge measurement using a ultrasonic technique allows us to detect degradation of the electrical insulation in a power transformer. However, The ultrasonic measurement studies don't offer a good solution in operating conditions. In this paper, we investigated characteristics of ultrasonic noise caused by a 345kV power transformer under operating conditions. The ultrasonic noises generated by corona in air, vibration of core, pump and fan, etc. An ultrasonic frequency caused by corona in air was appeared 9 and 18[MHz] at the outside wall of the transformer. And a spectra of core vibration was detected below 2.5[kHz]. These spectrum were compared with 20 $\sim$ 200[kHz] of the internal partial discharge in the model transformer.

  • PDF

Acoustic Noise and Vibration Reduction of Coreless Brushless DC Motors with an Air Dynamic Bearing

  • Yang, lee-Woo;Kim, Young-Seok;Kim, Sang-Uk
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.255-265
    • /
    • 2009
  • This paper presents the acoustic noise and mechanical vibration reduction of a coreless brushless DC motor with an air dynamic bearing used in a digital lightening processor. The coreless brushless DC motor does not have a stator yoke or stator slot to remove the unbalanced force caused by the interaction between the stator yoke and the rotor magnet. An unbalanced force makes slotless brushless DC motors vibrate and mechanically noisy, and the attractive force between the magnet and the stator yoke increases power consumption. Also, when a coreless brushless DC motor is driven by a $120^{\circ}$ conduction type inverter, high frequency acoustic noise occurs because of the peak components of the phase currents caused by small phase inductance and large phase resistance. In this paper, a core-less brushless DC motor with an air dynamic bearing to remove mechanical vibration and to reduce power consumption is applied to a digital lightening processor. A $180^{\circ}$ conduction type inverter drives it to reduce high frequency acoustic noise. The applied methods are simulated and tested using a manufactured prototype motor with an air dynamic bearing. The experimental results show that a coreless brushless DC motor has characteristics of low power consumption, low mechanical vibration, and low high frequency acoustic noise.

A Development of the Operational Architecture of a Low Altitude Air Defense Automation System (저고도 방공자동화체계의 운용아키덱처 개발)

  • Son, Hyun-Sik;Kwon, Yong-Soo
    • Journal of the military operations research society of Korea
    • /
    • v.34 no.1
    • /
    • pp.31-45
    • /
    • 2008
  • This paper describes a development of the operational architecture of a low altitude air defense automation system using a systems engineering approach. The future battlefield is changing to new system of systems that command and control by the network based BM/C4I. Also, it is composed of various sensors and shooters in an single theater. Future threats may be characterized as unmanned mewing bodies that the strategic effect is great such as UAVs, cruise missiles or tactical ballistic missiles. New threats such as low altitude stealth cruise missiles may also appear. The implementation of a low altitude air defense against these future threats is required to complex and integrated approach based on systems engineering. In this view, this work established an operational scenario and derived operational requirements by identifying mission and future operational environments. It is presented the operational architecture of the low altitude air defense automation system by using the CORE 5.0.

Investigation of an Arc-induced Long Period Fiber Grating Inscribed in a Photonic Crystal Fiber with Two Large Air Holes

  • Kim, Sun-Duck;Kim, Gil-Hwan;Hwang, Kyu-Jin;Lim, Sun-Do;Lee, Kwan-Il;Kim, Sang-Hyuck;Lee, Sang-Bae
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.428-433
    • /
    • 2009
  • A photonic crystal fiber with two large air holes outside the holey cladding region is fabricated to induce an effective long periodic grating (LPG) in the core by an electric arc discharge. We believe that the two large air holes lead to the asymmetric perturbation in the core under the electric arc discharge, thereby introducing the coupling to the first higher-order mode. The transmission characteristics of the PCF with the LPG for the external perturbation such as strain, curvature, and temperature are also investigated. It was found that the shift of resonance peak in the transmission spectrum depends on the bending direction. The curvature of 8.55 $m^{-1}$ results in the center wavelength shifts of 1.8, 4.3, and 11 nm for a vertical, diagonal, and horizontal direction of the curvature to the large air-hole alignment, respectively.

Mechanism for Ni/YSZ Nano-composite Anode from Spherical Core-shell Formation

  • An, Yong-Tae;Choe, Byeong-Hyeon;Ji, Mi-Jeong;Gu, Ja-Bin;Hwang, Hae-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.31.2-31.2
    • /
    • 2011
  • We studied a method of manufacturing an anode to restrict contraction in reducing NiO/YSZ by uniformly mixing. In order to mix Ni and YSZ, a sub-micron Ni core surface was coated at high-speed by a mixture of nano-sized YSZ and a spherical core-shell was subsequently formed. The micron-sized core-shell anode powder was then heat treated at $400{\sim}1,450^{\circ}C$ in an air atmosphere and Ni was extruded and synthesized in nano-size. Subsequently, when the nano-sized mixture of the anode was heat treated and maintained at a temperature of $1,450^{\circ}C$, the anode was manufactured, where Ni and YSZ were uniformly distributed with the nano-structure. According to the nano-sized anode powder synthesis process, Ni particles were oxidized at $400{\sim}500^{\circ}C$ and became spherical by surface tension. In the case of the spherical core Ni powder, the heat treatment temperature rose to $1,250^{\circ}C$ and then a gap between the internal and external pressures occurred due to thermal and tensile stresses. A crack subsequently appeared on the surface, and the heat treatment temperature was increased continuously to increase the pressure gap and then the core Ni extruded as a nano-sized powder, Ni and YSZ uniformly distributed. It was found that the anode of 50~200 nm with a consistent structure obtained in this study has electric conductivity that is approximately 3 times larger than that of a commercial anode.

  • PDF

The Melting Process in an Ice-Ball Capsule (아이스볼내의 융해과정에 대한 해석)

  • Suh, J.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.4
    • /
    • pp.577-588
    • /
    • 1995
  • A numerical study is made on the melting process of an unconstrained ice inside an isothermal ice-ball capsule. The unmelted ice core is continuously ascending on account of buoyancy forces. Such a buoyancy-assisted melting is commonly characterized by the existence of a thin liquid film above the ice core. The present study is motivated to present a full-equation-based analysis of the influences of the initial subcooling and the natural convection on the fluid flow associated with the buoyancy-assisted melting. In the light of the solution strategy, the present study is substantially distinguished from the existing works in that the complete set of governing equations in both the melted and unmelted regions are resolved in one domain. Numerical results are obtained by varying the wall temperature and initial temperature. The present results reported the transition of the flow pattern in a spherical capsule, as the wall temperature was increased over the density inversion point. In addition, time wise variation of the shapes for the liquid film and the lower ice surface, the time rate of change in the melt volume fraction and the melting distance at symmetric line is analyzed and is presented.

  • PDF