• Title/Summary/Keyword: amyloid ${\beta}$

Search Result 427, Processing Time 0.021 seconds

Populus tomentiglandulosa protects against amyloid-beta25-35-induced neuronal damage in SH-SY5Y cells

  • Yu Ri Kwon;Ji-Hyun Kim;Sanghyun Lee;Hyun Young Kim;Eun Ju Cho
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.408-415
    • /
    • 2023
  • Alzheimer's disease constitutes a large proportion of all neurodegenerative diseases and is mainly caused by excess aggregation of amyloid beta (Aβ), which results in oxidative stress, inflammation, and apoptosis in the neurons. Populus tomentiglandulosa belongs to the Salicaceae family and is widely distributed in Korea; the antioxidant activities of the extract and fractions from P. tomentiglandulosa have been demonstrated in previous studies. Specifically, the ethyl acetate (EtOAc) fraction of P. tomentiglandulosa (EtOAc-PT) shows the most powerful antioxidative activity. Therefore, the present study investigates the protective effects of EtOAc-PT against neuronal damage in Aβ25-35-stimulated SH-SY5Y cells. EtOAc-PT restored cell viability significantly as well as inhibited the levels of reactive oxygen species and lactate dehydrogenase release compared to the Aβ25-35-induced control group. Furthermore, the inflammation- and apoptosis-related protein expressions were investigated to demonstrate its neuroprotective mechanism. EtOAc-PT downmodulated the expressions of inducible nitric oxide synthase, cyclooxygenase-2, B-cell lymphoma 2 associated X, and B-cell lymphoma 2. Thus, the findings show that EtOAc-PT has protective effects against Aβ25-35 by suppressing oxidative stress, inflammation, and apoptosis.

Molecular and Cellular Basis of Neurodegeneration in Alzheimer's Disease

  • Jeong, Sangyun
    • Molecules and Cells
    • /
    • v.40 no.9
    • /
    • pp.613-620
    • /
    • 2017
  • The most common form of senile dementia is Alzheimer's disease (AD), which is characterized by the extracellular deposition of amyloid ${\beta}-peptide$ ($A{\beta}$) plaques and the intracellular formation of neurofibrillary tangles (NFTs) in the cerebral cortex. Tau abnormalities are commonly observed in many neurodegenerative diseases including AD, Parkinson's disease, and Pick's disease. Interestingly, tau-mediated formation of NFTs in AD brains shows better correlation with cognitive impairment than $A{\beta}$ plaque accumulation; pathological tau alone is sufficient to elicit frontotemporal dementia, but it does not cause AD. A growing amount of evidence suggests that soluble $A{\beta}$ oligomers in concert with hyperphosphorylated tau (pTau) serve as the major pathogenic drivers of neurodegeneration in AD. Increased $A{\beta}$ oligomers trigger neuronal dysfunction and network alternations in learning and memory circuitry prior to clinical onset of AD, leading to cognitive decline. Furthermore, accumulated damage to mitochondria in the course of aging, which is the best-known nongenetic risk factor for AD, may collaborate with soluble $A{\beta}$ and pTau to induce synapse loss and cognitive impairment in AD. In this review, I summarize and discuss the current knowledge of the molecular and cellular biology of AD and also the mechanisms that underlie $A{\beta}-mediated$ neurodegeneration.

Protective Effect of Chlorogenic Acid against Aβ-Induced Neurotoxicity

  • Lee, Chan-Woo;Won, Tae-Joon;Kim, Hak-Rim;Lee, Dong-Ho;Hwang, Kwang-Woo;Park, So-Young
    • Biomolecules & Therapeutics
    • /
    • v.19 no.2
    • /
    • pp.181-186
    • /
    • 2011
  • Beta-amyloid (A${\beta}$) is considered as one of the major causes of Alzheimer's disease. This study examined the neuroprotective effects of chlorogenic acid, a naturally occurring polyphenol which is distributed widely in plants, fruits and vegetables, against A${\beta}$-induced toxicity. A${\beta}$ decreased significantly the viability of PC12 cells. This was accompanied by an increase in the intracellular calcium levels and cleaved caspase-3. In addition, A${\beta}$ induced an increase in Bax, and a decrease in Bcl-2 compared to the controls. However, a pre-treatment with chlorogenic acid rescued the PC12 cells from A${\beta}$ by attenuating the elevated intracellular calcium levels and reducing the levels of the apoptosis related proteins, including caspase-3, Bcl-2 and Bax. These results suggest that the protective effects of chlorogenic acid are, at least in parts, by attenuating the intracellular calcium influx and reducing apoptosis induced by A${\beta}$.

A Correlative Study on Amyloid β-Induced Cell Death Independent of Caspase Activation

  • Tuyet, Pham Thi Dieu
    • Journal of Integrative Natural Science
    • /
    • v.7 no.2
    • /
    • pp.87-91
    • /
    • 2014
  • Amyloid beta ($A{\beta}$) peptide has been implicated in the pathogenesis of Alzheimer's disease and has been reported to induce apoptotic death in cell culture. Cysteine Proteases, a family of enzymes known as caspases, mediate cell death in many models of apoptosis. In the present study, we examined the caspase activity and cell death in $A{\beta}$-treated SHSY5Y cells, as an attempt to elucidate the relationship between the type of caspase and $A{\beta}$-induced cell death. $A{\beta}$ at 20 ${\mu}M$ induce activation of caspase-3, 8 and 9 activity, but not the caspase-1. Caspase-3, 8 and 9 were processed by Ab treatment, consistent with the activity assay. Inhibition of the caspase activities by the selective inhibitors, however, marginally affected the cell death induced by $A{\beta}$. Taken together, the results indicate that $A{\beta}$-induced cell death may be independent of caspase activity and rather, the enzymes might be activated as a result of the cell death.

Gene Expression of Beta-Amyloid Precursor Protein (베타-아밀로이드 단백질 유전자 발현 연구)

  • Kim, Jong-Suk;Woo, Jong-Inn;Suh, Yoo-Hun;Kim, Ju-Han;Rhi, Bou-Yong
    • Korean Journal of Biological Psychiatry
    • /
    • v.3 no.2
    • /
    • pp.170-180
    • /
    • 1996
  • Lowered immune function in the senile dementia patients may be related to the abnormal metabolism of amyloid precursor protein(APP). To investigate the passibility of an abnormal metabolism of APP in lymphocytes and the possible role of APP in the activation of lymphocytes in senile dementia patients, immunohistochemical study of rat spleen and fluorescence activated cell sorter analysis(FACS) of human lymphocytes with the specific antigen far each lymphocyte and double fluorescent marker with antibody to APP were performed. After stimulating lymphocyte with phytohemagglutinin(PHA), APP mRNA and protein were extracted and quantitfied and the influence of ${\beta}$-amyloid protein($A{\beta}$) specific antibody on lymphocyte division was investigated. In spleen, the majority of cells showing $A{\beta}$ immunoreactivity was found in the T-sell dependent zone. FACS indicated that around 90% $CD_4(+)$ T-cells and 60% of $CD_8(+)$ T-sell were immunoreactive to $A{\beta}$ specific antibody(mAb 4G8). Northern blot analysis shows that lymphocyte APP mRNA was gradually increased to reach a maximum at 3 days after activation with lectin mitogen PHA. However, the $A{\beta}$ immunoreactivity an cell surface remained constant during stimulation with PHA, indicating that the release of APP(secreted farm of APP) might be increased. A very large increase in soluble APP secretion was observed in T-lymphocyte upon activation, but only law levels in the resting stale. Immunoblot was carried out an the protein obtained from cell lysate after stimulating lymphocyte by applying PHA to the cultured lymphocyte, and the result was that $A{\beta}$ band of immature farm under 116 KDa marker decreased as the duration of culture was increased after PHA stimulation. The monoclonal $A{\beta}$ specific(4G8) and polyclonal APP antibodies did not inhibit the [$^3H$]-thymidine uptake of mitogen-treated lymphocytes significantly, suggesting that mitogenesis can not be inhibited by specific $A{\beta}$ and polyclonal APP antibody. These results suggest that APP is expressed in T-cell and might be closely associated with the function of T-cells.

  • PDF

Screening of 56 Herbal formulas covered by the National Health Insurance Service on Dementia-related Factors (국민 건강보험 급여 한약 처방 56종의 치매 주요 생리지표 및 신경세포 변화에 대한 효능 비교 연구)

  • Lim, Hye-Sun;Kim, Yu Jin;Kim, Yoon ju;Kim, Bu-Yeo;Jeong, Soo-Jin
    • The Journal of Korean Medicine
    • /
    • v.39 no.3
    • /
    • pp.1-16
    • /
    • 2018
  • Objectives: The purpose of this study was to investigate the effects of 56 herbal formulae covered by the National Health Insurance Corporation (NHIC) on dementia-related biomarkers and neuronal cell changes. Methods: The 56 herbal formulae were extracted with 70% ethanol at $100^{\circ}C$ for 2 h. The antioxidant properties was measured by radical scavenging assay using ABTS+ radical. The acetylcholinesterase (AChE) activity was tested by Ellman's assay and $amyloid-{\beta}$ ($A{\beta}$) aggregation was determined using fluorescence method. To estimate the inhibitory effects of herbal formulae on neuronal cell death and inflammation using HT22 hippocampal cells and BV-2 microglia, respectively. Results: Among the 56 herbal formulae, Dangguiyukhwangtang, Banhasasimtang, Samhwangsasimtang, Cheongwiesan, Hwangryunhaedoktang, Banhabaekchulchunmatang, Jaeumganghwatang, Cheongseoikgitang, and Hoechunyanggyuksan has a significant inhibitory effects on acetylcholinesterase (AChE) activity. Doinseunggitang and Samhwangsasimtang exerted the effect on the inhibition of $amyloid-{\beta}$ ($A{\beta}$) aggregation. Additionally, 10 herbal formulae affected AChE and $A{\beta}$ aggregation revealed antioxidant activity as well as neuroprotective and anti-neuroinflammation effects in neuronal cell lines. Conclusions: 10 herbal formulae that have been shown to be effective against the major dementia markers have been shown to have antioxidant activity, neuronal cell protection and inhibition of brain inflammation. Further investigation of these herbal formulae will need to be validated in dementia animal models.

Antioxidant Activity and Protective Effect of Caffeic Acid against Oxidative Stress Induced by Amyloid Beta and LPS in C6 Glial Cells (Caffeic Acid의 항산화 활성 및 Amyloid beta와 LPS에 의한 C6 Glial 세포의 산화적 스트레스 보호 효과)

  • Kim, Ji Hyun;Wang, Qian;Lee, Sanghyun;Cho, Eun Ju
    • Korean Journal of Pharmacognosy
    • /
    • v.46 no.2
    • /
    • pp.109-115
    • /
    • 2015
  • This study was investigated the radical scavenging effect and the protective activity of caffeic acid (CA) against oxidative stress. CA showed strong 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) and hydroxyl radical ( OH) scavenging activity, showing 42.00% and 87.22% at 5 μM concentration of DPPH and ·OH scavenging activity, respectively. Furthermore, we studied protective activity of CA from amyloid beta (A${\beta}$25-35) and lipopolysaccharide (LPS) induced neuronal cell damage and neuronal inflammation using C6 glial cells. The treatment of A${\beta}$25-35 to C6 glial cell showed declines in cell viability and high generation levels of reactive oxygen species (ROS). However, the treatment of CA increased cell viability. The treatment of 5 ${{\mu}M}$ CA led to the elevation of cell viability from 59.28% to 81.22%. In addition, the production of ROS decreased cellular levels of ROS by the treatment of CA. The treatment of LPS to C6 glial cells increased significant elevation of nitric oxide (NO) production, while CA decreased NO production significantly. The production of NO increased by the treatment of LPS to 131.08%, while CA at the concentration of 1 ${{\mu}M}$ declined the NO production to 104.86%. The present study indicated thatCA attenuated A${\beta}$25-35-induced neuronal oxidative stress and inflammation by LPS, suggesting as a promising agent for the neurodegenerative diseases.

Phosphodiesterase III Inhibitor Cilostazol Protects Amyloid β-Induced Neuronal Cell Injury via Peroxisome Proliferator-Activated Receptor-γ Activation (Amyloid β에 의해 유도된 신경세포 손상에 대한 phosphodiesterase III inhibitor인 cilostazol의 신경보호 효과)

  • Park, Sun-Haeng;Kim, Ji-Hyun;Bae, Sun-Sik;Hong, Ki-Whan;Choi, Byung-Tae;Shin, Hwa-Kyoung
    • Journal of Life Science
    • /
    • v.21 no.5
    • /
    • pp.647-655
    • /
    • 2011
  • The neurotoxicity of aggregated amyloid ${\beta}$ ($A{\beta}$) has been implicated as a critical cause in the pathogenesis of Alzheimer's disease (AD). It can cause neurotoxicity in AD by evoking a cascade of apoptosis to neuron. Here, we investigated the neuroprotective effects of cilostazol, which acts as a phosphodiesterase III inhibitor, on $A{\beta}_{25-35}$-induced cytotoxicity in mouse neuronal cells and cognitive decline in the C57BL/6J AD mouse model via peroxisome proliferator-activated receptor (PPAR)-${\gamma}$ activation. $A{\beta}_{25-35}$ significantly reduced cell viability and increased the number of apoptotic-like cells. Cilostazol treatment recovered cells from $A{\beta}$-induced cell death as well as rosiglitazone, a PPAR-${\gamma}$ activator. These effects were suppressed by GW9662, an antagonist of PPAR-${\gamma}$ activity, indicative of a PPAR-${\gamma}$-mediated signaling. In addition, cilostazol and rosiglitazone also restored PPAR-${\gamma}$ activity levels that had been altered as a result of $A{\beta}_{25-35}$ treatment, which were antagonized by GW9662. Furthermore, cilostazol also markedly decreased the number of apoptotic-like cells and decreased the Bax/Bcl-2 ratio. Intracerebroventricular injection of $A{\beta}_{25-35}$ in C57BL/6J mice resulted in impaired cognitive function. Oral administration of cilostazol (20 mg/kg) for 2 weeks before $A{\beta}_{25-35}$ injection and once a day for 4 weeks post-surgery almost completely prevented the $A{\beta}_{25-35}$-induced cognitive deficits, as did rosiglitazone. Taken together, our findings suggest that cilostazol could attenuate $A{\beta}_{25-35}$-induced neuronal cell injury and apoptosis as well as promote the survival of neuronal cells, subsequently improving cognitive decline in AD, partly because of PPAR-${\gamma}$ activation. The phosphodiesterase III inhibitor cilostazol may be the basis of a novel strategy for the therapy of AD.

Development of Inhibitors of $\beta$-Amyloid Plaque Formation

  • Kim, Dong-Jin
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2006.04a
    • /
    • pp.123-135
    • /
    • 2006
  • Alzheimer's disease (AD) is the most common form of dementia in the aging population and is clinically characterized by a progressive loss of cognitive abilities. Pathologically, it is defined by the appearance of senile plaques - extracellular insoluble, congophilic protein aggregates composed of amyloid $\beta$ (A$\beta$) and neurofibrillary tangles (NFTs) - inyracellular lesions consisting of paired helical filaments from hyperphosphorylated cytoskeletal tau protein as described by Alois Alzheimer a century ago. These hallmarks still serve as the major criteria for a definite diagnosis of the disease. Consequently, one of the key strategy for drug development in this disease area focuses on reducing the concentration of cerebral A$\beta$ plaque by using substances that inhibit A$\beta$ fibril formation. We focused on developing inhibitors by synthesizing several kinds of aromatic molecules. The synthetic compounds were initially screened to evaluate the effective compound by tioflavin T fluorescence assay. The selected effective compounds were tested cytotoxicity and protective effect from A$\beta$-induced neuronal toxicity by cell based MTT assay with HT22 hippocampal neurons. The BBB permeability on effectors was also tested in in vitro co-culture model(HUVEC/C6 cell line). The behavior test wea carried out in mutant APP/PS1 transgenic mouse model of Alzheimer's disease. And inhibition of A$\beta$ fibril formation by the effective compound was monitored with transmitted electron microscopic images.

  • PDF

Spinacia oleracea Extract Protects against Chemical-Induced Neuronal Cell Death (시금치 추출물에 의한 뇌세포 사멸 보호 효과)

  • Park, Ja-Young;Heo, Jin-Chul;Woo, Sang-Uk;Shin, Heung-Mook;Kwon, Taeg-Kyu;Lee, Jin-Man;Chung, Shin-Kyo;Lee, Sang-Han
    • Food Science and Preservation
    • /
    • v.14 no.4
    • /
    • pp.425-430
    • /
    • 2007
  • To investigate the potential therapeutic value of a plant extract against amyloid ${\beta}-peptide-induced$ cell damage, we first screened extracts of 250 herbs, and finally selected a water extract of Spinacia oleracea for further study. This extractshowed the potential to inhibit the reactions of oxidants. We measured the angiotensin-converting-enzyme (ACE) inhibitory activity of the extract, and assessed the ability of the extract to protect neuronal cells from chemical-induced cell death. SH-SY5Y neuroblastoma cells were used in this assay. The extract exerted protective effects on $H_2O_2-induced$ cell death, when $H_2O_2$ was used at 100 M, 200 M, and 500 M (protection of 87%, 73%, and 58%, respectively). When 50 M of amyloid ${\beta}-peptide$ was added to the test cells, however, the extract had no protective effect on cell death. The extract inhibited ACE activity in a dose-dependent manner, and exhibited potent protection against the deleterious effects of $H_2O_2$. In sum, these results suggest that a water extract of Spinacia oleracea has the potential to afford protection against chemical-induced neuronal cell death, and the extract may be useful in the treatment of neurodegenerative diseases. The precise molecular mechanism of neuroprotection is under investigation.