• 제목/요약/키워드: amylase release

검색결과 35건 처리시간 0.022초

폴리에칠렌글리콜이 그라프트된 폴리우레탄 디바이스로부터 안지오텐신 및 ${\alpha}$-아밀라제의 방출 (In Vitro Release of Angiotensin and ${\alpha}-Amylase$ from Polyethylene Glycol-Grafted Polyurethane Devices)

  • 하정헌;김성호
    • Journal of Pharmaceutical Investigation
    • /
    • 제19권4호
    • /
    • pp.185-190
    • /
    • 1989
  • The release of angiotensin and ${\alpha}-amylase$ from monolithic devices of different molecular weight of polyethylene glycol (PEC) grafted polyurethane copolymer was investigated. Water-soluble PEG grafted polymer provided a controlled release of angiotensin and ${\alpha}-amylase$. The release rate of angiotensin and ${\alpha}-amylase$ could be controlled by varying the molecular weight of PEC grafted. The release mechanism may be associated with the creation of pore or domain through the devices following the gel swelling and self-aggregation by PEC grafted polymer. Hydrophobic polyurethane grafted with PEG can provide a biomaterial for prolonged release of angiotensin and ${\alpha}-amylase$ from angiotensin and ${\alpha}-amylase$ blended system.

  • PDF

Dual Effect of $H_2O_2$ on the Regulation of Cholecystokinin-induced Amylase Release in Rat Pancreatic Acinar Cells

  • An, Jeong-Mi;Rhie, Jin-Hak;Seo, Jeong-Taeg
    • International Journal of Oral Biology
    • /
    • 제31권4호
    • /
    • pp.127-133
    • /
    • 2006
  • [ $H_2O_2$ ], a member of reactive oxygen species (ROS), is known to be involved in the mediation of physiological functions in a variety of cell types. However, little has been known about the physiological role of $H_2O_2$ in exocrine cells. Therefore, in the present study, the effect of $H_2O_2$ on cholecystokinin (CCK)-evoked $Ca^{2+}$ mobilization and amylase release was investigated in rat pancreatic acinar cells. Stimulation of the acinar cells with sulfated octapeptide form of CCK (CCK-8S) induced biphasic increase in amylase release. Addition of $30\;{\mu}M\;H_2O_2$ enhanced amylase release caused by 10 pM CCK-8S, but inhibited the amylase release induced by CCK-8S at concentrations higher than 100 pM. An ROS scavenger, $10\;{\mu}M$ Mn(III)tetrakis(4-benzoic acid)porphyrin chloride, increased amylase release caused by CCK-8S at concentrations higher than 100 pM, although lower concentrations of CCK-8S-induced amylase release was not affected. To examine whether the effect of $H_2O_2$ on CCK-8S-induced amylase release was exerted via modulation of intracellular $Ca^{2+}$ signaling, we measured the changes in intracellular $Ca^{2+}$ concentration $([Ca^{2+}]_i)$ in fura-2 loaded acinar cells. Although $30\;{\mu}M\;H_2O_2$ did not induce any increase in $[Ca^{2+}]_i$ by itself, it increased the frequency and amplitude of $[Ca^{2+}]_i$ oscillations caused by 10 pM CCK-8S. However, $30\;{\mu}M\;H_2O_2$ had little effect on 1 nM CCK-8S-induced increase in $[Ca^{2+}]_i$. ROS scavenger, 1 mM N-acetylcysteine, did not affect $[Ca^{2+}]_i$ changes induced by 10 pM or 1 nM CCK-8S. Therefore, it was concluded that $30\;{\mu}M\;H_2O_2$ enhanced low concentration of CCK-8S-induced amylase release probably by increasing $[Ca^{2+}]_i$ oscillations while it inhibited high concentration of CCK-8S-induced amylase release.

중금속류가 취절편의 Amylase 분비에 미치는 영향 (Effect of Heavy Metals on the Secretion of Amylase in Rat Pancreatic Fragments)

  • 김혜영;김원준
    • 대한약리학회지
    • /
    • 제17권2호
    • /
    • pp.31-36
    • /
    • 1981
  • Heavy metals which are present as trace elements in human body have been known to modify various enzymatic reaction. These metals can be essential or non-essential. Zinc, copper and calcium are essential in maintaining some biological processes, whereas non-essential metals such as cadmium, lead and mercury produce accumulatve toxic effect. Cadmium accumulated in pancreas can cause toxicity and damage of pancreatic cells, thereby influencing CHO metabolism. Lead compounds are known to produce toxic effects on the kidney, digestive system and brain fellowed by inhibition of activity of ${\rho}-aminolevulinic$ acid and biosynthesis of hemoproteins and cytochrome. Evidence has been accumulated that zinc not only acts as a cofactor in enzyme reaction but also prevents toxic effect induced by heavy metal such as copper and cadmium. To demonstrate the effect of heavy metals on pancreatic secretion, part of uncinate pancreas was taken and incubated in Krebs-Ringer bicarbonate buffer with heavy metals used. Additional treatment with CCK-OP was performed when needed. After incubation during different period of time, medium was analyzed for amylase activity using Bernfeld's method. The present study was attempted in order to elucidate the effect of several kinds of heavy metal on exocrine pancreatic secretion in vitro. The results obtained are as follows: 1) CCK-OP stimulated significantly amylase release from pancreatic fragments in vitro. 2) CCK-OP response of amylase release from pancreatic fragments was inhibited by treatmant with cadmium, especially high doses of cadmium. 3) CCK-OP response of amylase release from pancreatic fragments was inhibited when pretreated with $10^{-4}M$ copper chloride. 4) Lead chloride at the concentration of $10^{-3}M\;and\;10^{4}M$ stimulated the basal amylase release in vitro but CCK-OP response did not augment by lead chloride. 5) Zine chloride did not affect amylase release from pancreatic fragment in vitro. From the results mentioned above, it is suggested that CCK-OP response was inhibited it the amylase release from pancreatic fragments pretreated with cadmium and copper chloride.

  • PDF

Aminoglycosides의 취효소 분비항진기전에 관한 연구 (Studies on the Enzyme-releasing Mechanism of Aminoglycosides from Pancreas)

  • 심호식;김경환;홍사석
    • 대한약리학회지
    • /
    • 제19권1호
    • /
    • pp.71-76
    • /
    • 1983
  • Aminoglycoside antibiotics are reported to enhance the amylase release from isolated slices of pancreas in vitro and the mode of action of aminoglycosides on amylase release is considered different from those of acetylcholine or cholecystokinin(CCK), i.e., electronmicroscopically intact zymogen granules are appeared in the lumen of pancreatic acini by treatment of aminoglycosides. It is known that atropine blocks the secretagogue effect of acetylcholine, and phenoxybenzamine is reported to block the effects of CCK or its analogue caerulein. Present study was undertaken to investigate the mode of action of aminoglycosides on the amylase release using atropine, phenoxybenzamine and propranolol as a membrane stabilizing agent in slices of chicken pancreas. The results are summarized as follows : 1) Streptomycin and kanamycin increased the amylase release significantly from slices of chicken pancreas. 2) The effect of streptomycin was inhibited by atropine but not by phenoxybenzamine or propranolol. 3) The amylase release by acetylcholine was blocked by atropine tut the effect of cholecystokinin octapeptide(CCK-8) was not influenced by atropine, phenoxybenzamine or propranolol. 4) Pretreatment of streptomycin enhanced the secretagogue effect of acetylcholine or CCK-8. From these results it is suggested that amylase releasing effects of aminoglycosides are mediated in part by cholinergic stimulation and in part by membrane alteration and these effects are enhanced by acetylcholine or cholecystokinin.

  • PDF

Interaction between Cholecystokinin and Secretin in Isolated Rat Pancreatic Acini

  • Yoon, Shin-Hee;Hahn, Sang-June;Sim, Sang-Soo;Rhie, Duck-Joo;Song, In-Young;Baek, Hye-Jung;Kim, Myung-Suk;Jo, Yang-Hyeok
    • The Korean Journal of Physiology
    • /
    • 제29권2호
    • /
    • pp.243-250
    • /
    • 1995
  • A possible potentiation between cholecystokinin (CCK) and secretin in amylase secretion from isolated rat pancreatic acini was investigated. Combined treatment of acini with secretin and CCK at low concentrations, which are known to be physiological, resulted in enzyme secretion larger than the arithmetic sum of their separate effects. Such a potentiating effect also occurred between secretin and A23187 (Ca ionophore), between forskolin (adenylate cyclase activator) and CCK, and between forskolin and A23187. Staurosporin (protein kinase C inhibitor) and W7 (calmodulin antagonist) inhibited markedly the potentiated amylase release induced by the agonists, but KT5720 (protein kinase A inhibitor) did not affect the potentiated amylase release. Therefore, we concluded that the action of CCK in a physiological concentration is potentiated by secretin in a physiological concentration range and vice versa, and that the intracellular mechanism necessary for the potentiation is associated with $Ca^{2+}$. However, it is uncertain what mechanisms are involved in potentiation of amylase release after CAMP and $Ca^{2+}$.

  • PDF

Camostat 투여 흰쥐 이자 외분비선의 분비자극물질에 대한 반응성 (Exocrine Secretory Responsiveness of Dispersed Pancreatic Acini to Secretagogues in Camostat-treated Rats)

  • 김철;김동구;김경환
    • 대한약리학회지
    • /
    • 제30권2호
    • /
    • pp.205-215
    • /
    • 1994
  • It is well known that chronic stimulation with CCK gives rise to growth of exocrine pancreas and to increased content of enzyme proteins in pancreas. However, littls Is known about changes of the secretory function of exocrine pancreas which has been chronically stimulated with CCK, especially about the responsiveness to secretagogues such as CCK, caerulein and carbachol. The present study was performed to investigate the effect of camostat on secretory profiles and the responsiveness to secretagogues of exocrine pancreas by observing in vitro amylase release stimulated by cholecystokinin-octapeptide(CCK-8) and carbachol in dispersed isolated pancreatic acini from camostat-treated rats for 4 or 10 days. The results summarized as follows : 1) The maximal effective concentration of CCK-8 in amylase release in the camostat treated group was greater than control group, but that of carbachol was not different between groups. 2) Analysis of the stimulated amylase release as the percentage of the maximal response revealed that camostat treatment caused right-shift of the dose-response curve of CCK-8. Camostat did not cause significant changes in the dose-response curve of carbachol. 3) There were considerable increases in the amylase release in the camostat-treated group, compared to the control when acini were stimulated with CCK-8 $10^{-9}\;M$ and carbaochol $10^{-6}\;M$, and higher concentrations. 4) There was a reverse correlation between the tissue content and the maximal release(percent of the total content) of amylase. These results suggest that chronic exposure of exocrine pancreas to increased endogenous CCK can enhance the responsiveness of exocrine enzyme secretion to secretagogues, especially at higher concentrations of CCK and carbachol.

  • PDF

계면활성제 첨가배양에 따른 Rhizopus oryzae의 $\alpha$-Amylase와 Phosphatase분비촉진 (Enhancement by Surfactant on Release of $\alpha$-Amylase and Phosphatase in Submerged Culture of Rhizopus oryzae)

  • 윤희주;최영길
    • 한국미생물·생명공학회지
    • /
    • 제13권4호
    • /
    • pp.403-408
    • /
    • 1985
  • Rhizopus oryzae를 액체배양하는 동안, $\alpha$-amylase, acid phosphatase 그리고 alkaline phosphatase와 같은 분비효소의 분비능에 대한 계면활성 제의 촉진효과를 조사하였다. 그 결과 집락의 형태적인 변화를 볼 수 있었는바, 0.18mM SDS 처리구에서는 작은 pelletal형, 0. 48mM DOC 처리구에서는 pulpy형, 계면활성제를 처리하지 않은 시험구에서는 사상형의 집 락을 나타내었다. SDS를 첨가함으로써 $\alpha$-amylase는 9배, acid phosphatase는 25배의 활성도 증가가 유도되었다. DOC첨가 시험구에서 alkaline phosphatase 활성도는 배양액에서 11배 증가가 나타났을 뿐 아니라 세포질에서도 역시 상승하였다.

  • PDF

아드레나린성 약물 전처치 흰쥐의 취절편 효소분비에 관한 실험 (Amylase Release from Pancreatic Slices of Rat Treated with Adrenergic Drugs)

  • 김경환;김혜영;안영수;이우주;홍사석
    • 대한약리학회지
    • /
    • 제20권2호
    • /
    • pp.49-57
    • /
    • 1984
  • The exocrine pancreatic secretion is controlled mainly by gastrointestinal hormones as well as cholinergic nerves. The adrenergic influence on exocrine pancreas is thought not to he important and the evidences supporting this contention are still contradictory. In an effort to elucidate the adrenergic influence on the exocrine pancreas, we have determined the amylase release from pancreatic slices of rats treated with adrenergic drugs. The albino rats of either sex, weighing $60{\sim}80\;g$, were decapitated and the uncinate pancreata were isolated and incubated in screw top vials containing 2 ml krebs-Ringer bicarbonate buffer solution gassed with 95% $O_2$ and 5% $CO_2$. These vials were shaken continuously in a waterbath maintained at $37^{circ}C$, and enzyme release was stimulated with acetylcholine$(10^{-5}M)$. For chronic treatment methoxamine$(an\;{\alpha}-adrenergic\;agonist,\;5\;mg/kg)$, isoproterenol (a\;{\beta}-adrenergic\;agonist,\;10\;mg/kg) and reserpine (0.5 mg/kg) along with cholecystokinin octapeptide$(CCK-op,\;2{\mu}g/kg)$ were given i.p. in rats daily for 3, 5, 7, 9 or 12 days. For acute experiment these drugs were added directly to the incubation medium in a concentration of $10^{-5}M$ except CCK-OP $(10^{-9}M)$. The results are summarized as follows. 1) The addition of methoxamine, isoproterenol or reserpine to the incubation medium containing pancreatic slices augmented the release of amylase induced by acetylcholine and among them the effect of isoproterenol was most prominent. 2) Chronic treatment of methoxamine or reserpine caused enhancement of acetylcholine response in amylase release from pancreatic slice throughout the experimental period, but the amylase release was less than that of control by 12 days isoproterenol treatment. 3) In the pancreatic slices obtained from 12 days treatment of CCK-OP, the amylae release responding to acetylcholine was enhanced. By these finding it is suggested that methoxamine, isoproterenol and reserpine had marked influence on the exocrine pancreatic functions in rats and that these effects are due to their inherent actions rather than sympathetic nerve or adrenergic receptor function.

  • PDF