• Title/Summary/Keyword: amplitude variation analysis

Search Result 217, Processing Time 0.032 seconds

Quantitative Nondestructive Evaluation of Bonded Joints utilizing Pulse-Echo Ultrasonic Test (펄스-에코법을 이용한 접착접합 시험편의 정량적 비파괴 평가)

  • Oh, Seung-Kyu;Hwang, Young-Taek;Lee, Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.157-164
    • /
    • 2003
  • The pulse-echo method is one of the most widely used ultrasonic techniques for application of nondestructive evaluation. Particularly, quantitative nondestructive evaluation of defects has been considered more important to assure the reliability and the safety of structure. Frequency energy in adhesive joints is based on the ultrasonic wave analysis. The attenuation coefficient upon wave amplitude and the frequency energy that is expressed in the term of wave pressure amplitude were utilized for the primary wave experiment. By means of a control experiment, it was confirmed that the variation of the frequency energy in adhesive joints depends on transition by stress variation. In this paper, the ultrasonic characteristics were measured for single lap joint and Double Cantilever Beam specimen with different fracture modes that was subjected to stress. Consequently, the data that was obtained from the adhesive specimen was analytically compared to the fracture mechanics parameter

NUMERICAL STUDY OF THE SLOSHING PHENOMENON IN THE 2-DIMENSIONAL RECTANGULAR TANK WITH VARIABLE FREQUENCY AT A LOW FILLING LEVEL (가진 주파수에 따른 이차원 사각탱크 내부의 슬로싱에 관한 수치적 연구)

  • Jung, J.H.;Lee, C.Y.;Yoon, H.S.;Kim, H.J.
    • Journal of computational fluids engineering
    • /
    • v.20 no.1
    • /
    • pp.16-25
    • /
    • 2015
  • The present study investigates the sloshing phenomena in a two-dimensional rectangular tank at a low filling level by using a level set method based on finite volume method. The code validations are performed by comparing between the present results and previous numerical and experimental results, which gives a good agreement. Various excitation frequencies and excitation amplitude of the 30% filling height tank have been considered in order to observe the dependence of the sloshing behavior on the excitation frequency and amplitude. Regardless of excitation amplitude, the maximum value of wall pressure occurs when the excitation frequency reaches the natural frequency. The time sequence of free surface and corresponding streamlines for excitation frequencies have been presented to analysis the variation of wall pressure according to time, which contributes to explain the double peaks in the time variation of wall pressure.

Using neural networks to model and predict amplitude dependent damping in buildings

  • Li, Q.S.;Liu, D.K.;Fang, J.Q.;Jeary, A.P.;Wong, C.K.
    • Wind and Structures
    • /
    • v.2 no.1
    • /
    • pp.25-40
    • /
    • 1999
  • In this paper, artificial neural networks, a new kind of intelligent method, are employed to model and predict amplitude dependent damping in buildings based on our full-scale measurements of buildings. The modelling method and procedure using neural networks to model the damping are studied. Comparative analysis of different neural network models of damping, which includes multi-layer perception network (MLP), recurrent neural network, and general regression neural network (GRNN), is performed and discussed in detail. The performances of the models are evaluated and discussed by tests and predictions including self-test, "one-lag" prediction and "multi-lag" prediction of the damping values at high amplitude levels. The established models of damping are used to predict the damping in the following three ways : (1) the model is established by part of the data measured from one building and is used to predict the another part of damping values which are always difficult to obtain from field measurements : the values at the high amplitude level. (2) The model is established by the damping data measured from one building and is used to predict the variation curve of damping for another building. And (3) the model is established by the data measured from more than one buildings and is used to predict the variation curve of damping for another building. The prediction results are discussed.

Interference of Acoustic Signals Due to Internal Waves in Shallow Water

  • Na Young-Nam
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.189-197
    • /
    • 1999
  • To investigate internal waves (IW) effect on acoustic wave propagation, m analysis is conducted on mode travel time and model simulation. Based on the thermistor string data, it can be shown that the thermocline depth variation may cause travel time difference as much as 4-10 ms between mode 1 and 2 over range 10 km. This travel time difference causes interference among modes and thus fluctuation from range-independent stratified ocean structure. In real situations, however, there exist additionally spatial variation of IW. Model simulation with all modes and simple IW shows clear responses of acoustic signals to IW, amplitude and phase fluctuation.

  • PDF

Inelastic seismic analysis of RC bridge piers including flexure-shear-axial interaction

  • Lee, Do Hyung;Elnashai, Amr S.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.3
    • /
    • pp.241-260
    • /
    • 2002
  • The effect of shear coupled with axial force variation on the inelastic seismic behaviour of reinforced concrete bridge piers is investigated in this paper. For this purpose, a hysteretic axial-shear interaction model was developed and implemented in a nonlinear finite element analysis program. Thus, flexure-shear-axial interaction is simulated under variable amplitude reversed actions. Comparative studies for shear-dominated reinforced concrete columns indicated that a conventional FE model based on flexure-axial interaction only gave wholly inadequate results and was therefore incapable of predicting the behaviour of such members. Analysis of a reinforced concrete bridge damaged during the Northridge (California 1994) earthquake demonstrated the importance of shear modelling. The contribution of shear deformation to total displacement was considerable, leading to increased ductility demand. Moreover, the effect of shear with axial force variation can significantly affect strength, stiffness and energy dissipation capacity of reinforced concrete members. It is concluded that flexure-shear-axial interaction should be taken into account in assessing the behaviour of reinforced concrete bridge columns, especially in the presence of high vertical ground motion.

Prediction of nonlinear characteristics of soil-pile system under vertical vibration

  • Biswas, Sanjit;Manna, Bappaditya;Choudhary, Shiva S.
    • Geomechanics and Engineering
    • /
    • v.5 no.3
    • /
    • pp.223-240
    • /
    • 2013
  • In the present study an attempt was made to predict the complex nonlinear parameters of the soil-pile system subjected to the vertical vibration of rotating machines. A three dimensional (3D) finite element (FE) model was developed to predict the nonlinear dynamic response of full-scale pile foundation in a layered soil medium using ABAQUS/CAE. The frequency amplitude responses for different eccentric moments obtained from the FE analysis were compared with the vertical vibration test results of the full-scale single pile. It was found that the predicted resonant frequency and amplitude of pile obtained from 3D FE analysis were within a reasonable range of the vertical vibration test results. The variation of the soil-pile separation lengths were determined using FE analysis for different eccentric moments. The Novak's continuum approach was also used to predict the nonlinear behaviour of soil-pile system. The continuum approach was found to be useful for the prediction of the nonlinear frequency-amplitude response of full-scale pile after introducing the proper boundary zone parameters and soil-pile separation lengths.

Annual Variation of Salinity in the Neighbouring Seas of Korea (韓國周邊 海洋鹽分의 年變化)

  • Kang, Yong Q;Jin, Myoung-Shin
    • 한국해양학회지
    • /
    • v.19 no.2
    • /
    • pp.105-110
    • /
    • 1984
  • We study the annual variation of salinity at the sea surface and at 30m depth in the neighbouring seas of korea by the harmonic method. The analysis based on the monthly salinity data at 182 stations collected regularly by the Fisheries Research and Development Agency during 15 years (1961∼1975). The annual mean salinity in the West Sea is lower than that in the East Sea. In the amplitude of annual salinity variation decreases and the phase delays with the downstream distance of the Tsushima Current. The salinity at 30m has a higher mean, a smaller amplitude and a delayed phase than the corresponding ones at the surface. The annual variations of salinity in the South and East Seas are caused mainly by the annual variations of the local precipitation and that of the fresh water discharge from the Yangtze River.

  • PDF

Design of Cutter Profile and the Characteristics of Vibration for Symmetric Screw Rotor (대칭형스크류로터의 커터설계와 진동특성에 관한 연구)

  • 최상훈
    • Journal of KSNVE
    • /
    • v.5 no.2
    • /
    • pp.257-264
    • /
    • 1995
  • We designed the cutter profile for symmetric screw rotor and did vibration experiment of screw rotor manufactured by the designed cutter profile. The results of this study are summarized as follows. (1) We designed the cutter profile of screw rotor (4-6)(5-6) by using numerical analysis program. (2) The maximum amplitude and variation of amplitude of 5-6 profile rotor are about 30 - 36.7% and 10 - 25% smaller than those of 4-6 profile rotor, respectively. (3) As the angular velocity of rotor changes from 100 to 300 rpm, the vibration of X, Y axis in driving shaft of 5-6 profile rotor is about 10 - 20% smaller than that of 4-6 profile rotor.

  • PDF

Voice quality of normal elderly people after a 3oz water-swallow test: An acoustic analysis (3온스 물 삼킴검사 이후 정상 노년층의 음질 변화: 음향학적 분석)

  • Lee, Sol Hee;Choi, Hong-Shik;Choi, Seong-Hee;Kim, HyangHee
    • Phonetics and Speech Sciences
    • /
    • v.10 no.2
    • /
    • pp.69-76
    • /
    • 2018
  • The elderly are at increased risk of developing dysphagia due to aging and illnesses. The aim of the current study was to analyze, via an acoustic study, the change in the voice quality of normal elderly people after a 3oz water-swallow test. Subjects included a group of 60 normal elderly people (age: $mean{\pm}SD=76.9{\pm}6.66$) and 60 healthy young adults (age: $mean{\pm}SD=25.1{\pm}2.36$). Every participant produced a five-second /a/ phonation pre- and post-swallowing, and the fractioned two-second sections were analyzed using the MDVP (multi dimensional voice program) analysis. The elderly group demonstrated a post-swallowing increase in the following related acoustic parameters: fundamental frequency, fundamental frequency variation, amplitude-variation, and noise in both two-second sections. However, the younger group showed an increase only in frequency related acoustic parameters (i.e., STD ) in the first two-second section. The significant changes in values in the post-swallowing parameters might indicate temporary irregularities in pitch and amplitude along with higher amounts of noise in the voice. The results could be attributed to water residues in the vocal fold and vocal tract, as well as a deterioration of the motor and sensory functions caused by anatomical and physiological changes that result from aging.

Development of Error Analysis Program for Phase-based Respiratory Gating Radiation Therapy (위상기반 호흡연동 방사선치료 시 오차 분석 프로그램 개발)

  • Song, Ju-Young;Nah, Byung-Sik;Chung, Woong-Ki;Ahn, Sung-Ja;Nam, Taek-Keun;Yoon, Mi-Sun
    • Progress in Medical Physics
    • /
    • v.17 no.3
    • /
    • pp.136-143
    • /
    • 2006
  • The respiratory gating radiation therapy which Irradiates only in the stable respiratory period with analyzing the periodic motion of a reflective marker on the patient's abdomen has been applied to the precise radiation treatment in order to minimize the effect of organ motion induced by the respiration. This respiratory gating system establishes irradiation region using the amplitude-based or phase-based method. Although phase-based method Is preferred because of the stability in the real treatment conditions, it has some limits to explain the exact correlation between the marker motion and organ motion. Even when the variation of amplitude which can introduce target motion considered as an error is produced, the phase-based method has the possibility to irradiate including the error positions. In this study, the error analysis program was developed for the verification of the tumor position's variation correlated with the variation of marker's amplitude which can be occurred during a phase-based respiratory sating treatment. The analysis program was tested with a virtual treatment record file and with a record file using moving phantom which were modified considering the irregular amplitude's variation simulating the real clinical situations. In both cases, accurate discrimination of error points and error calculation were produced. When the treatment record files of a real patient were analyzed with the program, the accurate recognition and calculation of the error points were also verified. The analysis program developed in this study will be applied as a useful tool for the analysis of errors due to the irregular variation of patients' respiration during the phase-base respiratory gating radiation treatment.

  • PDF