• 제목/요약/키워드: amplitude reduction factor

검색결과 23건 처리시간 0.025초

An innovative vibration barrier by intermittent geofoam - A numerical study

  • Majumder, Mainak;Ghosh, Priyanka;Sathiyamoorthy, Rajesh
    • Geomechanics and Engineering
    • /
    • 제13권2호
    • /
    • pp.269-284
    • /
    • 2017
  • A new technique is proposed to obtain more effective screening efficiency against the ground vibration using intermittent geofoam (IF) in-filled trench. The numerical analysis is performed by employing two-dimensional finite element method under dynamic condition. Vertically oscillated strip foundation is considered as the vibration source. In presence of the ground vibration, the vertical displacements at different locations (pick-up points) along the ground surface are captured to determine the amplitude reduction factor (ARF), which helps to assess the efficiency of the vibration screening technique. The efficiency of IF over continuous geofoam (CF) in-filled vibration barriers is assessed by varying the geofoam density, the location of trench and the frequency of excitation. The results from this study indicate that a significant reduction in ARF can be achieved by using intermittent geofoam as compared to continuous geofoam. Further, it is noticed that the efficiency of IF increases with an increase in the frequency of the vibrating source. These encouraging results put forward the potential of utilising intermittent geofoam as a vibration screening material.

외부가진 오일 버너의 고효율 저 NOx 배출특성 (Emission Characteristic for High Efficiency and Low NOx of Externally Oscillated Oil Burner)

  • 김성천;송형운;전영남
    • 한국대기환경학회지
    • /
    • 제22권5호
    • /
    • pp.693-700
    • /
    • 2006
  • The important factor for the development of burner is the achievement of low emissions with maintaining combustibility. In case of maintaining high temperature flame and excess air to increase the combustibility, it is possible to achieve high combustion efficiency, due to the reduction of UHC(unborn hydrocarbon), carbon monoxide and soot. However, it is difficult to reduce the thermal NOx produced in the high temperature flame. To solve this problem, we developed externally oscillated oil burner which is possible for the high efficiency combustion and low NOx emission, simultaneously. The experiment of flame characteristics and NOx reduction were achieved according to the variation of frequency, amplitude and air velocity. Frequency, amplitude and air velocity are the most important parameter. The optimum operating conditions are frequency 1,900 Hz, amplitude 3 $V_{pp.}$ and air velocity 6.8 m/s. Reduction of NOx and CO are 47% and 22%, respectively.

일정진폭 및 과대하중 하에서의 피로 균열 성장 수명 예측 (Prediction of Fatigue Crack Propagation Life under Constant Amplitude and Overloading Condition)

  • 이억섭;김승권
    • 한국정밀공학회지
    • /
    • 제15권10호
    • /
    • pp.113-119
    • /
    • 1998
  • Ship structures and aircraft structures are consisted of thin sheet alloy, so it is very important to understand the characteristics of fatigue crack propagation of that material and to establish the data base. The data for fatigue crack propagation behavior scatter very much even under identical experimental conditions with constant loading. The behavior of fatigue crack propagation under regular and irregular cyclic loadings is known to be highly affected by complicated factors such as plastic zone developed at the vicinity of crack tip and reduction of cross sectional area. In this paper, the controlled stress amplitude and overload fatigue crack propagation tests have been conducted to investigate the effect of varying factors such as plastic zone size near the crack tip and area reduction factor (AF) on the fatigue crack propagation behavior A better simulation of fatigue crack propagation behavior is found to be obtainable by using Wheeler and Willenborg models with AF effect.

  • PDF

공진주 실험의 이론적 모델링에 의한 자료분석 및 해석기법의 제안 (Data Reduction and Analysis Technique for the Resonant Column Testing by Its Theoretical Modeling)

  • 조성호;황선근;강태호;권병성
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.291-298
    • /
    • 2003
  • The resonant column testing is a laboratory testing method to determine the shear modulus and the material damping factor of soils. The method has been widely used for many applications and its importance has been increased. Since the establishment of the testing method in 1963, the low-technology electronic devices for testing and data acquisition have limited the measurement to the amplitude of the linear spectrum. The limitations of the testing method were also attributed to the assumption of the linear-elastic material in the theory of the resonant column testing and to the use of the wave equation for the dynamic response of the specimen. For the better theoretical formulation of the resonant column testing, this study derived the equation of motion and provided its solution. This study also proposed the improved data reduction and analysis method for the resonant column testing, based on the advanced data acquisition system and the proposed theoretical solution for the resonant column testing system. For the verification of the proposed data reduction and analysis method, the numerical simulation of the resonant column testing was performed by the finite element analysis. Also, a series of resonant column testing were peformed for Joomunjin sand, which verified the feasibility, of the proposed method and showed the limitations of the conventional data reduction and analysis method.

  • PDF

Cyclic Shift Based Tone Reservation PAPR Reduction Scheme with Embedding Side Information for FBMC-OQAM Systems

  • Shi, Yongpeng;Xia, Yujie;Gao, Ya;Cui, Jianhua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권8호
    • /
    • pp.2879-2899
    • /
    • 2021
  • The tone reservation (TR) scheme is an attractive method to reduce peak-to-average power ratio (PAPR) in the filter bank multicarrier with offset quadrature amplitude modulation (FBMC-OQAM) systems. However, the high PAPR of FBMC signal will severely degrades system performance. To address this issue, a cyclic shift based TR (CS-TR) scheme with embedding side information (SI) is proposed to reduce the PAPR of FBMC signals. At the transmitter, four candidate signals are first generated based on cyclic shift of the output of inverse discrete Fourier transform (IDFT), and the SI of the selected signal with minimum peak power among the four candidate signals is embedded in sparse symbols with quadrature phase-shift keying constellation. Then, the TR weighted by optimal scaling factor is employed to further reduce PAPR of the selected signal. At the receiver, a reliable SI detector is presented by determining the phase rotation of SI embedding symbols, and the transmitted data blocks can be correctly demodulated according to the detected SI. Simulation results show that the proposed scheme significantly outperforms the existing TR schemes in both PAPR reduction and bit error rate (BER) performances. In addition, the proposed scheme with detected SI can achieve the same BER performance compared to the one with perfect SI.

멀티-스텝 인버터를 이용한 무효전력 보상장치의 고조파 저감 (Reducing the Harmonics of Static Var Compensator Using Multi-Step Inverter)

  • 박현철;김영민;황종선;김종만
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 기술교육위원회 창립총회 및 학술대회 의료기기전시회
    • /
    • pp.19-22
    • /
    • 2001
  • For stabilization and improving power factor in the power lines, various Static Var Compensators(SVC) have been considered to be installed and partly applicated already. With all these merits of the SVC, it stil has demerits, principally evoking harmonic problems. So far, many harmonic reduction type inverters have been used in various parts. In this paper, the reactive power is controlled by amplitude of the output voltage. This paper propose that the multiple voltage source inverter have controllable power factor made by load vary at receive-stage as lagging and leakage control. The theoretical analysis on this system was confirmed through the computer simulation and the experiments.

  • PDF

Influence of latitude wind pressure distribution on the responses of hyperbolodial cooling tower shell

  • Zhang, Jun-Feng;Ge, Yao-Jun;Zhao, Lin
    • Wind and Structures
    • /
    • 제16권6호
    • /
    • pp.579-601
    • /
    • 2013
  • Interference effects are of considerable concern for group hyperboloidal cooling towers, but evaluation methods and results are different from each other because of the insufficient understanding on the structure behavior. Therefore, the mechanical performance of hyperboloidal cooling tower shell under wind loads was illustrated according to some basic properties drawn from horizontal rings and cantilever beams. The hyperboloidal cooling tower shell can be regarded as the coupling of horizontal rings and meridian cantilever beams, and this perception is beneficial for understanding the mechanical performance under wind loads. Afterwards, the mean external latitude wind pressure distribution, CP(${\theta}$), was artificially adjusted to pursue the relationship between different CP(${\theta}$) and wind-induced responses. It was found that the maximum responses in hyperboloidal cooling tower shell are primarily dominated by the non-uniformity of CP(${\theta}$) but not the local pressure amplitude CP or overall resistance/drag coefficient CD. In all the internal forces, the maximum amplitude of meridian axial tension shows remarkable sensitivity to the variation of CP(${\theta}$) and it's also the controlling force in structure design, so it was selected as an indicator to evaluate the influence of CP(${\theta}$) on responses. Based on its sensitivity to different adjustment parameters of CP(${\theta}$), an comprehensive response influence factor, RIF, was deduced to assess the meridian axial tension for arbitrary CP(${\theta}$).

Time-Varying Seismogenic Coulomb Electric Fields as a Probable Source for Pre-Earthquake Variation in the Ionospheric F2-Layer

  • Kim, Vitaly P.;Hegai, Valery V.;Liu, Jann Yenq;Ryu, Kwangsun;Chung, Jong-Kyun
    • Journal of Astronomy and Space Sciences
    • /
    • 제34권4호
    • /
    • pp.251-256
    • /
    • 2017
  • The electric coupling between the lithosphere and the ionosphere is examined. The electric field is considered as a timevarying irregular vertical Coulomb field presumably produced on the Earth's surface before an earthquake within its epicentral zone by some micro-processes in the lithosphere. It is shown that the Fourier component of this electric field with a frequency of 500 Hz and a horizontal scale-size of 100 km produces in the nighttime ionosphere of high and middle latitudes a transverse electric field with a magnitude of ~20 mV/m if the peak value of the amplitude of this Fourier component is just 30 V/m. The time-varying vertical Coulomb field with a frequency of 500 Hz penetrates from the ground into the ionosphere by a factor of ${\sim}7{\times}10^5$ more efficient than a time independent vertical electrostatic field of the same scale size. The transverse electric field with amplitude of 20 mV/m will cause perturbations in the nighttime F region electron density through heating the F region plasma resulting in a reduction of the downward plasma flux from the protonosphere and an excitation of acoustic gravity waves.

Pattern Optimization of Intentional Blade Mistuning for the Reduction of the Forced Response Using Genetic Algorithm

  • Park, Byeong-Keun
    • Journal of Mechanical Science and Technology
    • /
    • 제17권7호
    • /
    • pp.966-977
    • /
    • 2003
  • This paper investigates how intentional mistuning of bladed disks reduces their sensitivity to unintentional random mistuning. The class of intentionally mistuned disks considered here is limited, for cost reasons, to arrangements of two types of blades (A and B, say). A two-step procedure is then described to optimize the arrangement of these blades around the disk to reduce the effects of unintentional random mistuning. First, a pure optimization effort is undertaken to obtain the pattern (s) of the A and B blades that yields small/the smallest value of the largest amplitude of response to a given excitation in the absence of unintentional random mistuning using Genetic Algorithm. Then, in the second step, a qualitative/quantitative estimate of the sensitivity for the optimized intentionally mistuned bladed disks with respect to unintentional random mistuning is performed by analyzing their amplification factor, probability density function and passband/stopband structures. Examples of application with simple bladed disk models demonstrate the significant benefits of using this class of intentionally mistuned disks.

일방성(一方性) 복함재료(複合材料)의 파괴거동(破壞擧動) 및 강도평가(强度評價)에 관(關)한 연구(硏究) (A Study on the Strength Evaluation of Unidirectional Carbon Fiber Reinforced Plastics by Nondestructive Method)

  • 장홍근;이주석;조경식;이승희;박은수
    • 비파괴검사학회지
    • /
    • 제7권2호
    • /
    • pp.42-47
    • /
    • 1988
  • 이상의 결과를 요약하면 다음과 같다. 1) 초음파 C-scan 법에 의하여 층간분리, 기지균열 등의 손상 정도, 크기 및 형태의 판별이 가능하며 충격손상은 주로 섬유의 주축방향으로 성장한다. 2) 복합재료의 인장파괴시 적층구조에 따라 상이한 AE 양상을 나타내며 이 원인은 파괴 mode의 차이에 기인한다. 3) 섬유의 파단은 기지파단의 경우 보다 강력한 AE activity를 나타내며 peak amplitude의 분포를 분석하여 파괴 mode의 해석이 가능하다. 4) 복합재료의 파괴강도는 적층구조, 충격 손상 등에 영향을 받으며 응력파 계수(SWF)의 측정에 의해 정성적 평가가 가능하다.

  • PDF