• Title/Summary/Keyword: amplitude dependent damping

Search Result 33, Processing Time 0.026 seconds

Cyclic testing of a new visco-plastic damper subjected to harmonic and quasi-static loading

  • Modhej, Ahmad;Zahrai, Seyed Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.81 no.3
    • /
    • pp.317-333
    • /
    • 2022
  • Visco-Plastic Damper (VPD) as a passive energy dissipation device with dual behavior has been recently numerically studied. It consists of two bent steel plates and segments with a viscoelastic solid material in between, combining and improving characteristics of both displacement-dependent and velocity-dependent devices. In order to trust the performance of VPD, for the 1st time this paper experimentally investigates prototype damper behavior under a wide range of frequency and amplitude of dynamic loading. A high-axial damping rubber is innovatively proposed as the viscoelastic layer designed to withstand large axial strains and dissipate energy accordingly. Test results confirmed all assumptions about VPD. The behavior of VPD subjected to low levels of excitation is elastic while with increasing levels of excitation, a significant source of energy dissipation is provided through the yielding of the steel elements in addition to the viscoelastic energy dissipation. The results showed energy dissipation of 99.35 kN.m under a dynamic displacement with 14.095 mm amplitude and 0.333 Hz frequency. Lateral displacement at the middle of the device was created with an amplification factor obtained ranging from 2.108 to 3.242 in the rubber block. Therefore, the energy dissipation of viscoelastic material of VPD was calculated 18.6 times that of the ordinary viscoelastic damper.

The efficiency and robustness of a uni-directional tuned liquid damper and modelling with an equivalent TMD

  • Tait, M.J.;Isyumov, N.;El Damatty, A.A.
    • Wind and Structures
    • /
    • v.7 no.4
    • /
    • pp.235-250
    • /
    • 2004
  • The current study reports the results of an experimental program conducted on a structure fitted with a liquid damper (TLD) and subjected to harmonic excitation. Screens were placed inside the TLD to achieve the required inherent damping. In the first part of the study, reduced scale models of the building-TLD systems were tested under two levels of excitation. The efficiency of the damper was assessed by evaluating the effective damping provided to the structure and comparing it to the optimum effective damping value, provided by a linear tuned mass damper (TMD). An extensive parametric study was then conducted for one of the three models by varying both the excitation amplitude and the tuning ratio, defined as the ratio of the TLD sloshing frequency to the natural frequency of the structure. The effectiveness and robustness of a TLD with screens were assessed. Results indicate that the TLD can be tuned to achieve a robust performance and that its efficiency is not significantly affected by the level of excitation. Finally, the equivalent amplitude dependent TMD model, developed in the companion paper is validated using the system test results.

Vibration Control of an Engine Mount Featuring MR Fluid (MR 유체를 이용한 엔진마운트의 진동제어)

  • 이현희;최승복
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.213-218
    • /
    • 2001
  • A magnetorheological(MR) engine mount for a passenger vehicle and its vibration control performance is experimentally evaluated. A mixed-mode model for the MR engine is derived by incorporating Herschel-Bulkely model of the MR fluid. After analyzing the field-dependent damping force, a appropriate size of the MR engine mount is manufactured. The field-dependent is displacement transmissibility of the engine mount is evaluated in the frequency domain at various excitation levels. In addition, time-dependant damping force is experimentally investigated by changing the excitation amplitude.

  • PDF

Energy-based numerical evaluation for seismic performance of a high-rise steel building

  • Zhang, H.D.;Wang, Y.F.
    • Steel and Composite Structures
    • /
    • v.13 no.6
    • /
    • pp.501-519
    • /
    • 2012
  • As an alternative to current conventional force-based assessment methods, the energy-based seismic performance of a code-designed 20-storey high-rise steel building is evaluated in this paper. Using 3D nonlinear dynamic time-history method with consideration of additional material damping effect, the influences of different restoring force models and P-${\Delta}/{\delta}$ effects on energy components are investigated. By combining equivalent viscous damping and hysteretic damping ratios of the structure subjected to strong ground motions, a new damping model, which is amplitude-dependent, is discussed in detail. According to the analytical results, all energy components are affected to various extents by P-${\Delta}/{\delta}$ effects and a difference of less than 10% is observed; the energy values of the structure without consideration of P-${\Delta}/{\delta}$ effects are larger, while the restoring force models have a minor effect on seismic input energy with a difference of less than 5%, but they have a certain effect on both viscous damping energy and hysteretic energy with a difference of about 5~15%. The paper shows that the use of the hysteretic energy at its ultimate state as a seismic design parameter has more advantages than seismic input energy since it presents a more stable value. The total damping ratio of a structure consists of viscous damping ratio and hysteretic damping ratio and it is found that the equivalent viscous damping ratio is a constant for the structure, while the equivalent hysteretic damping ratio approximately increases linearly with structural response in elasto-plastic stage.

Dynamic Characterizations of a Piezoelectric Microactuator in Hard Disk Drive (HDD용 압전형 마이크로엑츄에이터의 동특성 규명)

  • Kim, Cheol-Soon;Kim, Kyu-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.232-236
    • /
    • 2000
  • To provide model parameters for servo control system design, dynamic characteristics of a piezoelectric microactuator for hard disk drive(HDD) were investigated. At first frequency response characteristics was measured and a second order model was proposed. Here the amplitude dependent dynamic characteristics such as low frequency gain and damping ratio were studied. In addition, the load current and equivalent impedance of the piezoelectric actuator were measured by varying excitation voltage and frequency. At last, the super-harmonic resonance of the piezoelectric actuator was discussed.

  • PDF

Nonlinear forced vibration of sandwich plate with considering FG core and CNTs reinforced nano-composite face sheets

  • Rostami, Rasoul;Rahaghi, Mohsen Irani;Mohammadimehr, Mehdi
    • Smart Structures and Systems
    • /
    • v.26 no.2
    • /
    • pp.185-193
    • /
    • 2020
  • Nonlinear vibration of sandwich plate with functionally graded material (FGM) core and carbon nano tubes reinforced (CNTs) nano-composite layers by considering temperature-dependent material properties are studied in this paper. Base on Classical plate theory (CPT), the governing partial differential equations of motion for sandwich plate are derived using Hamilton principle. The Galerkin procedure and multiple scales perturbation method are used to find relation between nonlinear frequency and amplitude of vibration response. The dynamic responses of the sandwich plate are also investigated in both time and frequency domains. Then, the effects of nonlinearity, excitation, power law index of FG core, volume fraction of carbon nanotube, the function of material variations of FG core, temperature changes, scale transformation parameter and damping factor on the frequency responses are investigated.

Seismic Response Control Performance of Linear and Nonlinear TLD Models (선형 및 비선형 TLD의 지진응답 제어성능 평가)

  • Lee, Sang-Hyun;Woo, Sung-Sik;Chung, Lan
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.519-526
    • /
    • 2006
  • This paper compares the seismic response control performance of linear and non-linear models fer tuned liquid damper (TLD). The existing linear and nonlinear TLD models were used for the numerical analysis of single degree of freedom (SDOF) and multi degree of freedom (MDOF) systems with TLD. The nonlinear model considers the variation of the frequency and damping of the TLD with varying excitation amplitude while the linear one has the invariant parameters. Numerical analysis results from SDOF systems indicate that the nonlinear model shows about 5% better control performance than linear one when the mass ratio is 2% and the optimal parameters for reducing peak responses are dependent on the characteristics of the excitation earthquake loads.

  • PDF

Damped Oscill ations of the (Hard)Contact Lenses Posterior to the Blink (순목 후 콘택트(하드)렌즈의 감쇄 진동)

  • Kim, Dae-Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.10 no.3
    • /
    • pp.173-184
    • /
    • 2005
  • A capillary action-induced tension develops in the tear layer between the contact lens and cornea, which leads to the restoring force due to difference in the layer thickness between either upper and lower or left and right side of the lens when it is displaced off the equilibrium position as a result of blinking. Suppose the lens was displaced a certain distance from the equilibrium position, lens starts to oscillate toward the equilibrium position with the decreasing amplitude due to the restoring force as well as the velocity dependent viscous damping force in the tear layer. A mathematical model which consists of the differential equations and their numerical solution was proposed to analyze the damped oscillations of lenses. The model predicts the time dependence of lenses after the blink varying the various parameters such as Be, diameters, masses and positions displaced from equilibrium. As the Be and mass of lens increases the rate of amplitude reduction decreases, which requires a more time for the lens to return to the equilibrium position. It seems that varying the lens' displacement and diameters affect the lens' motion very little.

  • PDF

Field monitoring of wind effects on a super-tall building during typhoons

  • Zhi, Lunhai;Li, Q.S.;Wu, J.R.;Li, Z.N.
    • Wind and Structures
    • /
    • v.14 no.3
    • /
    • pp.253-283
    • /
    • 2011
  • This paper presents the field measurement results of wind effects on a super-tall building (CITIC Plaza, 391 m high) located in Guangzhou. The field data such as wind speed, wind direction and acceleration responses were simultaneously and continuously recorded from the tall building by a wind and vibration monitoring system during two typhoons. The typhoon-generated wind characteristics including turbulence intensity, gust factor, peak factor, turbulence integral length scale and power spectral density of fluctuating wind speed were presented and discussed. The dynamic characteristics of the tall building were determined based on the field measurements and compared with those calculated from a 3D finite element model of the building. The measured natural frequencies of the two fundamental sway modes of the building were found to be larger than those calculated. The damping ratios of the building were evaluated by the random decrement technique, which demonstrated amplitude-dependent characteristics. The field measured acceleration responses were compared with wind tunnel test results, which were found to be consistent with the model test data. Finally, the serviceability performance of the super-tall building was assessed based on the field measurement results.

A study on the feedback control system for near field scanning optical microscope based on the tuning fork oscillator (수정 진동자를 이용한 근접장광학계 (Near-Field Scanning Optical Microscope) 제작 및 특성연구)

  • 윤선현
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.4
    • /
    • pp.267-272
    • /
    • 1999
  • We attached a fiber tip on the branch of a quartz crystal oscillator in order to make a feedback control system for near field optical microscope. The electrical impedance of the quartz crystal oscillator depends on the distance between the surface of the sample and the tip caused by the surface damping. Using this method, we can directly monitor the distance between the sample and the tip without inserting extra beam which might give extra optical noise. We characterize the XY scanning resolution and the amplitude of the vibrating tip and the Z-dependent decay of the evanescent wave.

  • PDF