• Title/Summary/Keyword: amplitude dependent damping

Search Result 33, Processing Time 0.02 seconds

Response analysis of soil deposit considering both frequency and strain amplitude dependencies using nonlinear causal hysteretic damping model

  • Nakamura, Naohiro
    • Earthquakes and Structures
    • /
    • v.4 no.2
    • /
    • pp.181-202
    • /
    • 2013
  • It is well known that the properties of the soil deposits, especially the damping, depend on both frequency and strain amplitude. Therefore it is important to consider both dependencies to calculate the soil response against earthquakes in order to estimate input motions to buildings. However, it has been difficult to calculate the seismic response of the soil considering both dependencies directly. The author has studied the time domain evaluation of the frequency dependent dynamic stiffness, and proposed a simple hysteretic damping model that satisfies the causality condition. In this paper, this model was applied to nonlinear analyses considering the effects of the strain amplitude dependency of the soil. The basic characteristics of the proposed method were studied using a two layered soil model. The response behavior was compared with the conventional model e.g. the Ramberg-Osgood model and the SHAKE model. The characteristics of the proposed model were studied with regard to the effects of element divisions and the frequency dependency that is a key feature of the model. The efficiency of the model was confirmed by these studies.

ON ANALYTICAL SOLUTION OF NON LINEAR ROLL EQUATION OF SHIPS

  • Tata S. Rao;Shoji Kuniaki;Mita Shigeo;Minami Kiyokazu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.10a
    • /
    • pp.134-143
    • /
    • 2006
  • Out of all types of motions the critical motions leading to capsize is roll. The dynamic amplification in case of roll motion may be large for ships as roll natural frequency generally falls within the frequency range of wave energy spectrum typical used for estimation of motion spectrum. Roll motion is highly non-linear in nature. Den are various representations of non-linear damping and restoring available in literature. In this paper an uncoupled non-linear roll equations with three representation of damping and cubic restoring term is solved using a perturbation technique. Damping moment representations are linear plus quadratic velocity damping, angle dependant damping and linear plus cubic velocity dependant damping. Numerical value of linear damping coefficient is almost same for all types but non-linear damping is different. Linear and non-linear damping coefficients are obtained form free roll decay tests. External rolling moment is assumed as deterministic with sinusoidal form. Maximum roll amplitude of non-linear roll equation with various representations of damping is calculated using analytical procedure and compared with experimental results, which are obtained form forced tests in regular waves by varying frequency with three wave heights. Experiments indicate influence of non-linearity at resonance frequency. Both experiment and analytical results indicates increase in maximum roll amplitude with wave slope at resonance. Analytical results are compared with experiment results which indicate maximum roll amplitude analytically obtained with angle dependent and cubic velocity damping are equal and difference from experiments with these damping are less compared to non-linear equation with quadratic velocity damping.

  • PDF

Probabilistic characteristics of damping in buildings

  • Fang, J.Q.;Li, Q.S.;Jeary, A.P.;Liu, D.K.;Wong, C.K.
    • Wind and Structures
    • /
    • v.2 no.2
    • /
    • pp.127-131
    • /
    • 1999
  • This paper describes probabilistic characteristics of damping in a tall building based on the results of full-scale measurement. It is found, through statistical analysis of the damping data, that the probability density function(PDF) of damping at the high amplitude plateau can be well represented by Normal distribution (Gaussian distribution). A stochastic damping model is proposed to estimate amplitude-dependent damping for practical application.

Comparison of Damping Capacities in Mg-Al and Mg-Zn Solid Solutions (Mg-Al 및 Mg-Zn 고용체의 진동감쇠능 비교)

  • Joong-Hwan Jun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.6
    • /
    • pp.389-395
    • /
    • 2023
  • Damping capacities of Mg-2.5%Al and Mg-2.5%Zn (in atomic) solid solutions were comparatively investigated in order to clarify the influence of solutionized Al and Zn elements on the damping characteristics of Mg. In this study, solid solutions with similar grain size were obtained by solution treatment at 678 K for different times (24 h for Mg-2.5%Al and 36 h for Mg-2.5%Zn), followed by water quenching at RT. The Mg-2.5%Al and Mg-2.5%Zn solid solutions showed similar damping capacities in the strain-amplitude independent region of 1 × 10-6 ~ 1 × 10-5 and in the strain-amplitude dependent region below 6 × 10-4, over which the Mg-2.5%Zn solid solution possessed better damping capacity than the Mg-2.5%Al solid solution. The damping tendencies depending on strain-amplitude for the two solid solutions were analyzed and discussed in terms of similar length between weak pinning points (solutes) and different solute/dislocation interaction forces in Granato-Lücke model.

Strain Amplitude Dependence of Damping Capacity in Mg-AI-Si Alloy (Mg-Al-Si 합금에서 진동감쇠능의 변형진폭 의존성)

  • Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.3
    • /
    • pp.144-148
    • /
    • 2011
  • Change in damping capacity with strain amplitude was studied in Mg-Al-Si alloy in as-cast, solution-treated and aged states, respectively. The as-cast microstructure of the alloy is characterized by eutectic ${\beta}$($Mg_{17}Al_{12}$) phase and Chinese script type $Mg_2Si$ particles. The solution treatment dissolved the ${\beta}$ phase into the matrix, while the aging treatment resulted in the distribution of continuous and discontinuous type ${\beta}$ precipitates. The solution-treated microstructure showed better damping capacity than as-cast and aged microstructures both in strain-dependent and strain-independent damping regions. The decrease in second-phase particles which weakens the strong pinning points on dislocations and distribution of solute atoms in the matrix, would be responsible for the enhanced damping capacity after solution treatment.

Effects of turbulence intensity and exterior geometry on across-wind aerodynamic damping of rectangular super-tall buildings

  • Quan, Y.;Cao, H.L.;Gu, M.
    • Wind and Structures
    • /
    • v.22 no.2
    • /
    • pp.185-209
    • /
    • 2016
  • Across-wind aerodynamic damping ratios are identified from the wind-induced acceleration responses of 15 aeroelastic models of rectangular super-high-rise buildings in various simulated wind conditions by using the random decrement technique. The influences of amplitude-dependent structural damping ratio and natural frequency on the estimation of the aerodynamic damping ratio are discussed and the identifying method for aerodynamic damping is improved at first. Based on these works, effects of turbulence intensity $I_u$, aspect ratio H/B, and side ratio B/D on the across-wind aerodynamic damping ratio are investigated. The results indicate that turbulence intensity and side ratio are the most important factors that affect across-wind aerodynamic damping ratio, whereas aspect ratio indirectly affects the aerodynamic damping ratio by changing the response amplitude. Furthermore, empirical aerodynamic damping functions are proposed to estimate aerodynamic damping ratios at low and high reduced speeds for rectangular super-high-rise buildings with an aspect ratio in the range of 5 to 10, a side ratio of 1/3 to 3, and turbulence intensity varying from 1.7% to 25%.

Comparison of Hardness and Damping Capacities of Mg-Al Alloy Subjected to T6 Heat Treatment and Low Temperature Long Term Isothermal Aging (T6 열처리 및 저온 장시간 등온 시효한 Mg-Al 합금의 경도 및 진동감쇠능 비교)

  • Joong-Hwan Jun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.5
    • /
    • pp.277-284
    • /
    • 2023
  • Hardness and damping characteristics of fine discontinuous precipitates (DPs) microstructure generated by low temperature long term isothermal aging were investigated in comparison with those of T6 heat-treated microstructure composed of DPs and continuous precipitates (CPs) in Mg-9%Al alloy. In this study, T6 and fine DPs microstructures were obtained by isothermal aging at 453 K for 24 h and at 413 K for 336 h, respectively, after solution treatment at 693 K for 24 h. The DPs microstructure exhibited higher hardness than the T6 microstructure, which is related to the lower (α + β) interlamellar spacing of the DPs. The DPs microstructure possessed better damping capacity than the T6 microstructure in the strain-amplitude independent region, whereas in the strain-amplitude dependent region, the reverse behavior was observed. The damping tendencies depending on strain-amplitude were discussed based on the microstructural features of the T6 and DPs microstructures.

Testing of tuned liquid damper with screens and development of equivalent TMD model

  • Tait, M.J.;El Damatty, A.A.;Isyumov, N.
    • Wind and Structures
    • /
    • v.7 no.4
    • /
    • pp.215-234
    • /
    • 2004
  • The tuned liquid damper (TLD) is increasingly being used as an economical and effective vibration absorber. It consists of a water tank having the fundamental sloshing fluid frequency tuned to the natural frequency of the structure. In order to perform efficiently, the TLD must possess a certain amount of inherent damping. This can be achieved by placing screens inside the tank. The current study experimentally investigates the behaviour of a TLD equipped with damping screens. A series of shake table tests are conducted in order to assess the effect of the screens on the free surface motion, the base shear forces and the amount of energy dissipated. The variation of these parameters with the level of excitation is also studied. Finally, an amplitude dependent equivalent tuned mass damper (TMD), representing the TLD, is determined based on the experimental results. The dynamic characteristics of this equivalent TMD, in terms of mass, stiffness and damping parameters are determined by energy equivalence. The above parameters are expressed in terms of the base excitation amplitude. The parameters are compared to those obtained using linear small amplitude wave theory. The validity of this nonlinear model is examined in the companion paper.

Amplitude-dependent Complex Stiffness Modeling of Dual-chamber Pneumatic Spring for Pneumatic Vibration Isolation Table (공압제진대용 이중챔버형 공압스프링의 복소강성 모형화)

  • Lee, Jeung-Hoon;Kim, Kwang-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.1
    • /
    • pp.110-122
    • /
    • 2008
  • Pneumatic vibration isolator typically consisting of dual-chamber pneumatic springs and a rigid table are widely employed for proper operation of precision instruments such as optical devices or nano-scale equipments owing to their low stiffness- and high damping-characteristics. As environmental vibration regulations for precision instruments become more stringent, it is required to improve further the isolation performance. In order to facilitate their design optimization or active control, a more accurate mathematical model or complex stiffness is needed. Experimental results we obtained rigorously for a dual-chamber pneumatic spring exhibit significantly amplitude dependent behavior, which cannot be described by linear models in earlier researches. In this paper, an improvement for the complex stiffness model is presented by taking two major considerations. One is to consider the amplitude dependent complex stiffness of diaphragm necessarily employed for prevention of air leakage. The other is to employ a nonlinear model for the air flow in capillary tube connecting the two pneumatic chambers. The proposed amplitude-dependent complex stiffness model which reflects dependency on both frequency and excitation amplitude is shown to be very valid by comparison with the experimental measurements. Such an accurate nonlinear model for the dual-chamber pneumatic springs would contribute to more effective design or control of vibration isolation systems.

THE INVESTIGATION OF PSEUDOELASTIC NITI WIRES FOR DAMPING USES

  • Pan, Qiang;Cho, Chong-Du;Lu, Sheng
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.154-159
    • /
    • 2007
  • Some shape memory alloys like NiTi show noticeable high damping property in pseudoelastic range. Due to its instinct characteristics, a NiTi alloy is commonly used for passive damping applications, in which the energy may be dissipated by the conversion from mechanical to thermal energy. Previous researches found the NiTi wires own higher damping property than the bars; therefore the wire form is adopted in this study. A loss factor is introduced for measuring the damping property of the NiTi wires. The experimental observation shows the mechanical behaviors of NiTi wires are dependent on temperature, strain rate and strain amplitude. Moreover, it is found the first several decades of loading-unloading cycles can obviously influence the property of NiTi wires under the same working conditions.

  • PDF