• Title/Summary/Keyword: amplification ratio

Search Result 210, Processing Time 0.02 seconds

Shear forces amplification due to torsion, explicit reliance on structural topology. Theoretical and numerical proofs using the Ratio of Torsion (ROT) concept

  • Bakas, Nikolaos
    • Structural Engineering and Mechanics
    • /
    • v.61 no.1
    • /
    • pp.15-29
    • /
    • 2017
  • The recently introduced index Ratio Of Torsion (ROT) quantifies the base shear amplification due to torsional effects on shear cantilever types of building structures. In this work, a theoretical proof based on the theory of elasticity is provided, depicting that the ratio of torsion (ROT) is independent of the forces acting on the structure, although its definition stems from the shear forces. This is a particular attribute of other design and evaluation criteria against torsion such as center of rigidity and center of strength. In the case of ROT, this evidence could be considered as inconsistent, as ROT is a function solely of the forces acting on structural members, nevertheless it is proven to be independent of them. As ROT is the amplification of the shear forces due to in-plan irregularities, this work depicts that this increase of internal shear forces rely only on the structural topology. Moreover, a numerical verification of this theoretical finding was accomplished, using linear statistics interpretation and nonlinear neural networks simulation for an adequate database of structures.

Analysis of Site Amplification Characteristics of Several Seismic Stations Distributed in the Southern Korean Peninsula (국내 지진관측소 부지의 지반증폭특성 연구)

  • Kim, Jun-Kyoung
    • Tunnel and Underground Space
    • /
    • v.16 no.6 s.65
    • /
    • pp.486-494
    • /
    • 2006
  • The horizontal to vertical (H/V) ratio technique in spectral domain is a common useful technique to estimate empirical site transfer function. The technique, originally proposed by Nakamura, is proposed to analyse the surface waves in the micrortremor records. The purpose of this paper is to estimate spectral ratio using observed data at the seismic stations distributed within Southern Korean Peninsula from the Fukuoka earthquake including 11 aftershocks. The results show that most of the stations have fairly good amplification characteristics in low frequency band. However, some of the seismic stations show one (resonant frequency specific to the site) or several local peaks of amplification factors with narrow high frequency band. Even though the site amplification characteristics are important information, we should be careful to analyse the observed ground motions from the seismic stations which have several very high amplification peaks for the deconvolution of seismic source and attenuation parameters.

Experimental Performance Evaluation of Displacement Amplification Damping Systems Using Cables and Pulleys (케이블과 도르래를 이용한 변위증폭형 감쇠시스템의 실험적 성능평가)

  • Oh, Jintak;Jung, In Yong;Ryu, Jaeho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.149-156
    • /
    • 2020
  • The vibration control device such as the damper can be used to reinforce the seismic performance of structures. The damper is activated by the deformation of structures during earthquake; however, the deformation of structures is extremely small, causing difficulty in using the damper. Therefore, there is a need for a method capable of amplifying small deformities and transmitting them to the damper. The purpose of this paper is to develop and evaluate a displacement amplification seismic system using cable-pulley. The appropriate cable was selected through a cable tensile performance test and the results of the frame experiment were compared with theoretical displacement amplification ratio values. As a result, it may be said that the proposed system using cable-pulley is useful for displacement amplification.

The Dynamic Basement Amplification Characteristics of a Dam Site using a Reference Site Method (기준관측소 방법을 이용한 댐체 기반암의 동적 지반증폭특성)

  • Wee, Soung-Hoon;Kim, Jun-Kyoung;Yoo, Seong-Hwa
    • Journal of the Korean earth science society
    • /
    • v.38 no.2
    • /
    • pp.161-171
    • /
    • 2017
  • Observed ground motions are composed of three factors such as, seismic source, attenuation, and site amplification effect. Among them, the site amplification characteristics should be considered significantly when estimating seismic source and attenuation characteristics with more confidence. The site effect is also necessary when estimating not only seismic hazard in seismic design engineering but also rock mechanical properties. This study uses the method of H/V spectral ratio of observed ground motion between target site and reference site called a reference site method. In addition to using the vertical Fourier spectrum of the reference site, we try out the horizontal Fourier spectrum as a new method in this study. We analyze H/V spectral ratio of six ground motions respectively, observed at four sites close to Yedang Reservoir. We then compare site amplification effects at each site using 3 kinds of seismic energies including S waves, Coda waves energy, and background noise. The results suggest that each site showed similar site amplification patterns in S waves and Coda waves energy. However, the site amplification of background noise shows much different characteristics from those of S waves and Coda wave energy, which suggests that the background noises at each site have their own developing mechanism. Each station shows its own characteristics of specific resonance frequency and site amplification properties in low, high and specific resonance frequency ranges. Comparison of the method used in this study to the others that used different methods can provide us with more information about the dynamic amplification of a site characteristics and site classification.

Amplification based on shear wave velocity for seismic zonation: comparison of empirical relations and site response results for shallow engineering bedrock sites

  • Anbazhagan, P.;Aditya, Parihar;Rashmi, H.N.
    • Geomechanics and Engineering
    • /
    • v.3 no.3
    • /
    • pp.189-206
    • /
    • 2011
  • Amplification based on empirical relations is widely used for seismic microzonation of urban centers. Amplifications are used to represent the site effects of a particular soil column. Many empirical correlations are available to estimate the amplification of seismic waves. These correlations are based on the ratio of shear wave velocity of foundation/rock to soil velocity or 30 m equivalent shear wave velocity ($Vs^{30}$) and are developed considering deep soil data. The aim of this work is to examine the applicability of available amplification relations in the literature for shallow engineering bedrock sites by carrying out site response studies. Shear wave velocity of thirteen sites having shallow engineering bedrock have been selected for the study. In these locations, the depth of engineering bedrock (> 760 ${\pm}$ 60 m/s) is matched with the drilled bore hole. Shear wave velocity (SWV) has been measured using Multichannel Analysis of Surface Wave survey. These sites are classified according to the National Earthquake Hazards Reduction Program (NEHRP) classification system. Amplifications for an earthquake are arrived for these sites using empirical relations and measured SWV data. Site response analysis has been carried out in SHAKE using SWV and using synthetic and real earthquake data. Amplification from site response analysis and empirical relations are compared. Study shows that the amplification arrived using empirical relations does not match with the site response amplification. Site response amplification is much more than empirical values for same shear wave velocity.

Case Study of Dynamic Amplification Characteristics of the Seismic Stations Using Observed Seismic Waves (관측지진파를 이용한 지반증폭특성 사례분석)

  • Lee, Jundae;Kim, Junkyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.1
    • /
    • pp.35-41
    • /
    • 2009
  • It is necessary to consider the site amplification for estimating SSI (soil structure interaction) and seismic source with more confidence. The horizontal to vertical (H/V) ratio technique in spectral domain is one of several techniques to estimate empirical site transfer function. The technique, originally proposed by Nakamura (1989), is applied to analyze the surface waves in the microtremor records. However, the application of this technique has been widened to the shear wave energy of strong motions for estimating site amplification. The purpose of this paper is to estimate spectral ratio using observed data at the seismic stations distributed within Southern Korean Peninsula from the Fukuoka earthquake including 11 aftershocks. The results show that each station has the its own characteristics of the specific resonance, high-band, and low-band frequency. The characteristics of the resonance frequency is more important because the quality of the seismic records are dependent on the resonance frequency. The result can be used for the study of site classification and removal of the site amplification effects from observed records can give us more reliable seismic source parameters.

  • PDF

Site characteristics and classification of seismic stations based on observed earthquake data (지진관측 자료를 이용한 국내 지진관측소의 지반특성 분류)

  • 박동희;연관희;장천중
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.61-68
    • /
    • 2003
  • The H/V ratio (Horizontal to Vertical spectral ratio) has been used to infer site amplification without previous knowledge of near-surface geology and in fact may provide useful general site condition information. This method is used to classify the site characteristics of seismic stations in Korea by comparison with known H/V ratios representative of various sites all over the world. In addition, differences between horizontal and vertical kappa values were evaluated for each seismic stations by comparing WV ratio and Weak Motion amplification derived from inversion of stochastic ground motion parameters and were used as index to quantitatively classify the site characteristics.

  • PDF

A Comparison Study of the Site Amplification Characteristics and Seismic Wave Energy Levels at the Sites near Four Electric Substations (4개 변전소시설 부지 인근관측소의 지반증폭 특성 및 파형에너지 수준 비교 연구)

  • Yoo, Seong-Hwa;Kim, Jun-Kyoung;Wee, Soung-Hoon
    • Journal of the Korean earth science society
    • /
    • v.37 no.1
    • /
    • pp.40-51
    • /
    • 2016
  • The problem has been pointed out that the domestic design response spectrum does not reflect site amplification, particularly in the high frequency bands, including the fact that site specific response spectrum from the observed ground motions appears relatively higher than design response spectrum. Among various methods, this study applied H/V spectral ratio of ground motion for estimating site amplification. This method, originated from S waves and Rayleigh waves, recently has been extended to Coda waves and background noise for estimating site amplification. For limited time of periods, 4 electric substation sites had operated seismic stations at two separate locations (bedrock and borehole) within each substation site. H/V spectral ratio of S wave, Coda wave, and background noise, was applied to 36 accelerations of 3 macro earthquakes (Odaesan, Jeju and Gongju earthquakes), larger than magnitude 3.4. observed simultaneously at each bedrock location within 4 electric substation sites. Site amplifications at the bedrock location of 4 sites were compared among S wave, Coda wave energy, and background noise, and then compared to the previous results from the borehole location data. The site classification was also tried using resonancy frequency information at each site and location. The results suggested that all the electric substation sites showed similar site amplification patterns among S wave, Coda wave, and background noise. Each station showed its own characteristics of site amplification property in low, high and specific resonance frequency ranges. Comparison of this study to other results using different method can give us much more information about dynamic amplification of domestic sites characteristics and site classification.

Seismic performance evaluation of agricultural reservoir embankment based on overtopping prevention structures installation

  • Bo Ra Yun;Jung Hyun Ryu;Ji Sang Han;Dal Won Lee
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.3
    • /
    • pp.469-484
    • /
    • 2023
  • In this study, three types of structures-stepped gabion retaining walls, vertical gabion retaining walls, and parapets-were installed on the dam floor crest to prevent the overflow of deteriorative homogeneous reservoirs. The acceleration response, displacement behavior, and pore water pressure ratio behavior were compared and evaluated using shaking-table model tests. The experimental conditions were set to 0.154 g in consideration of the domestic standard and the seismic acceleration range according to the magnitude of the earthquake, and the input waveform was applied with Pohang, Gongen, and artificial earthquake waves. The acceleration response according to the design ground acceleration increased as the height of the embankment increased, and the observed value were larger in the range of 1.1 to 2.1 times the input acceleration for all structures. The horizontal and vertical displacements exhibited maximum values on the upstream slope, and the embankment was evaluated as stable and included within the allowable range for all waveforms. The settlement ratio considering the similarity law exhibited the least change in the case of the parapet structure. The amplification ratio was 1.1 to 1.5 times in all structures, with the largest observed in the dam crest. The maximum excess pore water pressure ratio was in the range of 0.010 - 0.021, and the liquefaction evaluation standard was within 1.0, which was considered very stable.

Dynamic Amplification Characteristics of Major Domestic Seismic Observation Sites using Ground Motions from Domestic Macro Earthquakes (국내 중규모지진의 자료를 이용한 주요 관측소 지반의 동적 증폭특성에 관한 연구)

  • Kim, Jun Kyoung
    • The Journal of Engineering Geology
    • /
    • v.22 no.4
    • /
    • pp.399-408
    • /
    • 2012
  • To estimate seismic source and soil-structure interaction more reliably, site amplification characteristics should be considered. Among the various estimation methods, we used Nakamura's method (1989) to estimate site amplification. This method was originally applied to background noise; however, it has recently been successfully applied to S-wave and Coda-wave energy, and is applied to S-waves in the present study. We used more than 180 observed ground motions from 23 macro-earthquakes and then analyzed site amplification characteristics at eight seismic stations. Each station showed characteristics of site amplification properties in the low-, high- and resonance-frequency ranges. Comparison of the present results with those of other studies provide successful information regarding the dynamic amplification of domestic site characteristics and site classification.