• Title/Summary/Keyword: amount of learning

Search Result 1,008, Processing Time 0.032 seconds

Efficient Large Dataset Construction using Image Smoothing and Image Size Reduction

  • Jaemin HWANG;Sac LEE;Hyunwoo LEE;Seyun PARK;Jiyoung LIM
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.1
    • /
    • pp.17-24
    • /
    • 2023
  • With the continuous growth in the amount of data collected and analyzed, deep learning has become increasingly popular for extracting meaningful insights from various fields. However, hardware limitations pose a challenge for achieving meaningful results with limited data. To address this challenge, this paper proposes an algorithm that leverages the characteristics of convolutional neural networks (CNNs) to reduce the size of image datasets by 20% through smoothing and shrinking the size of images using color elements. The proposed algorithm reduces the learning time and, as a result, the computational load on hardware. The experiments conducted in this study show that the proposed method achieves effective learning with similar or slightly higher accuracy than the original dataset while reducing computational and time costs. This color-centric dataset construction method using image smoothing techniques can lead to more efficient learning on CNNs. This method can be applied in various applications, such as image classification and recognition, and can contribute to more efficient and cost-effective deep learning. This paper presents a promising approach to reducing the computational load and time costs associated with deep learning and provides meaningful results with limited data, enabling them to apply deep learning to a broader range of applications.

Motor Skill Learning on the Ipsi-Lateral Upper Extremity to the Damaged Hemisphere in Stroke Patients

  • Son, Sung Min;Hwang, Yoon Tae;Nam, Seok Hyun;Kwon, Yonghyun
    • The Journal of Korean Physical Therapy
    • /
    • v.31 no.4
    • /
    • pp.212-215
    • /
    • 2019
  • Purpose: This study examined whether there is a difference in motor learning through short-term repetitive movement practice in stroke survivors with a unilateral brain injury compared to normal elderly participants. Methods: Twenty-six subjects who were divided into a stroke group (n=13) or sex-aged matched normal elder group (n=13) participated in this study. To evaluate the effects of motor learning, the participants conducted a tracking task for visuomotor coordination. The accuracy index was calculated for each trial. Both groups received repetitive tracking task training of metacarpophalangeal joint for 50 trials. The stroke group performed a tracking task in the upper extremity insi-lesional to the damaged hemisphere, and the normal elder group performed the upper extremity matched for the same side. Results: Two-way repetitive ANOVA revealed a significant difference in the interactions ($time{\times}group$) and time effects. These results indicated that the motor skill improved in both the stroke and normal elder group with a tracking task. On the other hand, the stroke group showed lesser motor learning skill than the normal elder group, in comparison with the amount of motor learning improvement. Conclusion: These results provide novel evidence that stroke survivors with unilateral brain damage might have difficulty in performing ipsilateral movement as well as in motor learning with the ipsilateral upper limb, compared to normal elderly participants.

Predicting Brain Tumor Using Transfer Learning

  • Mustafa Abdul Salam;Sanaa Taha;Sameh Alahmady;Alwan Mohamed
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.5
    • /
    • pp.73-88
    • /
    • 2023
  • Brain tumors can also be an abnormal collection or accumulation of cells in the brain that can be life-threatening due to their ability to invade and metastasize to nearby tissues. Accurate diagnosis is critical to the success of treatment planning, and resonant imaging is the primary diagnostic imaging method used to diagnose brain tumors and their extent. Deep learning methods for computer vision applications have shown significant improvements in recent years, primarily due to the undeniable fact that there is a large amount of data on the market to teach models. Therefore, improvements within the model architecture perform better approximations in the monitored configuration. Tumor classification using these deep learning techniques has made great strides by providing reliable, annotated open data sets. Reduce computational effort and learn specific spatial and temporal relationships. This white paper describes transfer models such as the MobileNet model, VGG19 model, InceptionResNetV2 model, Inception model, and DenseNet201 model. The model uses three different optimizers, Adam, SGD, and RMSprop. Finally, the pre-trained MobileNet with RMSprop optimizer is the best model in this paper, with 0.995 accuracies, 0.99 sensitivity, and 1.00 specificity, while at the same time having the lowest computational cost.

Variational Auto-Encoder Based Semi-supervised Learning Scheme for Learner Classification in Intelligent Tutoring System (지능형 교육 시스템의 학습자 분류를 위한 Variational Auto-Encoder 기반 준지도학습 기법)

  • Jung, Seungwon;Son, Minjae;Hwang, Eenjun
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.11
    • /
    • pp.1251-1258
    • /
    • 2019
  • Intelligent tutoring system enables users to effectively learn by utilizing various artificial intelligence techniques. For instance, it can recommend a proper curriculum or learning method to individual users based on their learning history. To do this effectively, user's characteristics need to be analyzed and classified based on various aspects such as interest, learning ability, and personality. Even though data labeled by the characteristics are required for more accurate classification, it is not easy to acquire enough amount of labeled data due to the labeling cost. On the other hand, unlabeled data should not need labeling process to make a large number of unlabeled data be collected and utilized. In this paper, we propose a semi-supervised learning method based on feedback variational auto-encoder(FVAE), which uses both labeled data and unlabeled data. FVAE is a variation of variational auto-encoder(VAE), where a multi-layer perceptron is added for giving feedback. Using unlabeled data, we train FVAE and fetch the encoder of FVAE. And then, we extract features from labeled data by using the encoder and train classifiers with the extracted features. In the experiments, we proved that FVAE-based semi-supervised learning was superior to VAE-based method in terms with accuracy and F1 score.

A search on implications of the Learning Object of SCORM in K-12 education (초·중등교육에서의 학습객체 개념 활용 가능성 고찰)

  • Park, Inn-Woo;Im, Jin-Ho
    • The Journal of Korean Association of Computer Education
    • /
    • v.6 no.2
    • /
    • pp.61-70
    • /
    • 2003
  • Currently many companies and cyber-universities are investing large amount of time and efforts to develop a standard for Web-based learning contents. Among various standards proposed, SCORM(Sharable Content Object Reference Model) has been especially interested regarding web contents and LCMS(Learning Content Management System), In contrast with corporate and adult education, many seem to be skeptical that SCORM could be applied to K-12 education. In the study, opportunities and limitations of the concept for the learning object in 'SCORM' are examined through analyzing relevant studies and cases. In addition, this study examines the learning object in the pedagogical Perspective, and derives suggestions for applying them to K-12 education.

  • PDF

Genetic Algorithm Application to Machine Learning

  • Han, Myung-mook;Lee, Yill-byung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.7
    • /
    • pp.633-640
    • /
    • 2001
  • In this paper we examine the machine learning issues raised by the domain of the Intrusion Detection Systems(IDS), which have difficulty successfully classifying intruders. There systems also require a significant amount of computational overhead making it difficult to create robust real-time IDS. Machine learning techniques can reduce the human effort required to build these systems and can improve their performance. Genetic algorithms are used to improve the performance of search problems, while data mining has been used for data analysis. Data Mining is the exploration and analysis of large quantities of data to discover meaningful patterns and rules. Among the tasks for data mining, we concentrate the classification task. Since classification is the basic element of human way of thinking, it is a well-studied problem in a wide variety of application. In this paper, we propose a classifier system based on genetic algorithm, and the proposed system is evaluated by applying it to IDS problem related to classification task in data mining. We report our experiments in using these method on KDD audit data.

  • PDF

A Study on the Prediction Model of the Total Quantity of the Wall Finishing Structure Member Based on BIM Object Information Using Deep Learning (딥러닝을 활용한 BIM 객체정보기반의 벽마감 구조틀 부재 수량 예측모델에 관한 연구)

  • Park, Do-Yoon;Yun, Seok-Heon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.123-124
    • /
    • 2022
  • The work of modeling and calculating the quantity of detailed parts requires a lot of time and effort. However, The information of BIM Model can be used to predict the amount of uncreated parts with Deep Learning. In this study, Deep Learning was used to predict the total length of the member of frame that was not created. As a result, it was confirmed that the error rate was inside or outside 3%. And predicting other components in this way will increase productivity in Architectural field.

  • PDF

A Study on Efficient Memory Management Using Machine Learning Algorithm

  • Park, Beom-Joo;Kang, Min-Soo;Lee, Minho;Jung, Yong Gyu
    • International journal of advanced smart convergence
    • /
    • v.6 no.1
    • /
    • pp.39-43
    • /
    • 2017
  • As the industry grows, the amount of data grows exponentially, and data analysis using these serves as a predictable solution. As data size increases and processing speed increases, it has begun to be applied to new fields by combining artificial intelligence technology as well as simple big data analysis. In this paper, we propose a method to quickly apply a machine learning based algorithm through efficient resource allocation. The proposed algorithm allocates memory for each attribute. Learning Distinct of Attribute and allocating the right memory. In order to compare the performance of the proposed algorithm, we compared it with the existing K-means algorithm. As a result of measuring the execution time, the speed was improved.

Proposal of Database Design for Construction of Service for Skill Learning

  • Shin, Sanggyu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.05a
    • /
    • pp.183-186
    • /
    • 2018
  • In this paper, we propose the database design for skill learning service through the internet from the viewpoint of service engineering. This paper we describe the outlines for a design theory for skill learning service, which can lead to the satisfaction of both learner and instructor. Compared to other services, motion control learning takes a considerable amount of time, and this leads to a difficulty for learners to rate the quality of the service as well as for the instructors to provide consistent quality and standard of teaching. To solve these problems, we use a relational database with MongoDB which is an unstructured database allowing to flexibly incorporate the demands of both learner and instructor into the database itself.

A Study on Accuracy Estimation of Service Model by Cross-validation and Pattern Matching

  • Cho, Seongsoo;Shrestha, Bhanu
    • International journal of advanced smart convergence
    • /
    • v.6 no.3
    • /
    • pp.17-21
    • /
    • 2017
  • In this paper, the service execution accuracy was compared by ontology based rule inference method and machine learning method, and the amount of data at the point when the service execution accuracy of the machine learning method becomes equal to the service execution accuracy of the rule inference was found. The rule inference, which measures service execution accuracy and service execution accuracy using accumulated data and pattern matching on service results. And then machine learning method measures service execution accuracy using cross validation data. After creating a confusion matrix and measuring the accuracy of each service execution, the inference algorithm can be selected from the results.