• Title/Summary/Keyword: amorphous alloys

Search Result 256, Processing Time 0.023 seconds

Effect of Current Density on the Crystal Structure of Ni-W Alloys Prepared by Electrodeposition (Ni-W 합금도금의 결정구조에 미치는 전류밀도의 영향)

  • Kim, Won-Baek;Lee, Cheol-Gyeong;Lee, Jae-Cheon;Seo, Chang-Yeol
    • Korean Journal of Materials Research
    • /
    • v.8 no.10
    • /
    • pp.898-904
    • /
    • 1998
  • Ni-W alloys containing 10 to 50wt% W were prepared by electrodeposition. Tungsten content in the alloy increased with current density. X-ray diffraction analysis revealed that the alloy was crystalline phase when deposited at current densities lower than 50mA/${cm}^2$. Their crystal structure transformed to amorphous at higher current densities. In terms of tungsten content, the crystal -+ amorphous transition occurred at 40-46wt% which was identified by the 3 fold increase in the width of a diffraction peak. The lattice parameter of crystalline phase increased with W upto 40wt% which is higher than the solubility limit of W (about 30wt%) in Ni. Therefore, the alloys are considered to be Ni solid solution supersaturated with W. The amorphous Ni-W alloys were recrystallized by annealing them at temperatures over $400^{\circ}C$. This was evidenced by the appearance a strong [ 11 11 annealing texture. The supersaturated W was precipitated during the annealing at over $800^{\circ}C$. The current-density dependence of W content and crystallinity was utilized to produce alternating layers of crystalline (30wt% W) and amorphous (50wt%) phases which may exhibit unique mechanical and corrosion properties.

  • PDF

The Magnetic and Magnetostrictive Properties of Melt-Spun Ribbons of B Containing Terfenol-D Alloys

  • Kim, S. R.;S. Y. Kang;S. H. Lim
    • Journal of Magnetics
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 1997
  • The magnetic and magnetostrictive properties of melt-spun ribbons of the alloys (R0.33Fe0.67)1-xBx (R=Tb0.3Dy0.7 and 0$\leq$x$\leq$0.06) are ivestigated as a function of wheel speed during melt-quenching. The saturation magnetiation of the alloys with a crystalline phase ranges from 70 to 80 emu/g and does not vary substantially with the B content. The saturation magnetization of an amorphous phase, which is formed at the condition of thigh wheel speed and high B content, is reduced significantly, however. The coercive force is minimum at x= 0.02 and increases monotonously with the further increase of B content when the microstructure mainly consists of a crystalline phase, but again it is reduced significantly by the formation of an amorphous phase. The low field sensitivity of magnetostriction with magnetic field is found to be good for the alloys with x$\leq$0.04 over a wide range of wheel speed. This magnetostrictive behavior is in contrast with that observed previously for Dy-Fe and Tb-Fe based alloys and is thought to be due to low intrinsic magnetocrystalline anisotropy of the compound.

  • PDF

The Effect of Pr Additive on Magnetostriction of Amorphous Fe-B Alloy (Pr 첨가가 Fe-B 비정질합금의 자왜에 미치는 영향)

  • 조용수;김윤배;김창석;김택기
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.2
    • /
    • pp.126-129
    • /
    • 1994
  • In order to invetigate the effect of Pr additive on the magnetostriction of amorphous Fe-B alloys, amorphous $Fe_{86-x}B_{14}Pr_{x}(2{\leq}x{\leq}8\;at.%)$ alloys were prepared by a rapid solidification process. As the Pr content increased in the as-prepared amorphous $Fe_{84}B_{14}Pr_{2}$ alloy annealed at $300^{\circ}C$ for 2 hr increased to 70 ppm. Ac power loss and permeability$(f=50\;kHz,\;B_{m}=0.1\;T)$ of the annealed amorphous $Fe_{84}B_{14}Pr_{2}$ alloy were 15 W/kg and $5.5{\times}10^{3}$, respectively.

  • PDF

Fabrication and consolidation of amorphous Cu55Ti45 powders by mechanical alloying (기계적 합금화에 의한 비정질 Cu55Ti45 분말의 제조 및 성형)

  • 김도용
    • Journal of Powder Materials
    • /
    • v.7 no.2
    • /
    • pp.85-92
    • /
    • 2000
  • The Cu55Ti45 system was effectively mechanically-alloyed using a pulverizer. Noncrystallinities of the powders were characterized by TEM, X-ray and DSC. The amorphous powders were consolidated without losing their noncrystallinities. The consolidating conditions keeping a non-crystalline were obtained by building a TTT diagram of the amorphous powders. The microhardness of the crystallite and bulk amorphous alloys are also compared.

  • PDF

Magnetostriction and Magnetoelastic Propwrties of Amorphous Fe-B-Al Alloys (Fe-B-Al계 비정질합금의 자왜 및 자기탄성효과)

  • 조용수;김윤배;김창석;김택기
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.2
    • /
    • pp.135-138
    • /
    • 1993
  • Saturation rnagnetostriction and rnagnetoelastic properties of amorphous $Fe_{82}B_{18-x}Al_{x}$ and $Fe_{80}B_{20-x}Al_{x}$ alloys have been studied. Saturation magnetostriction of the alloys has increased according to the increase of AI content. The amorphous $Fe_{82}B_{14}Al_{4}$ alloy shows the highest saturation magnetostriction of 45 ppm among the alloy systems. The ratio of maximum magnetic induction change to tensile stress of this alloy is about $0.026\;T.mm^{2}/N$, and it is considered to be applicable for a high resolution mechanical sensor.

  • PDF

Thermal Stability of Amorphous Ti-Cu-Ni-Sn Prepared by Mechanical Alloying

  • Oanha, N.T.H.;Choi, P.P.;Kim, J.S.;Kim, J.C.;Kwone, Y.S.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.953-954
    • /
    • 2006
  • Ti-Cu-Ni-Sn quaternary amorphous alloys of $Ti_{50}Cu_{32}Ni_{15}Sn_3$, $Ti_{50}Cu_{25}Ni_{20}Sn_5$, and $Ti_{50}Cu_{23}Ni_{20}Sn_7$ composition were prepared by mechanical alloying in a planetary high-energy ball-mill (AGO-2). The amorphization of all three alloys was found to set in after milling at 300rpm speed for 2h. A complete amorphization was observed for $Ti_{50}Cu_{32}Ni_{15}Sn_3$ and $Ti_{50}Cu_{25}Ni_{20}Sn_5$ after 30h and 20h of milling, respectively. Differential scanning calorimetry analyses revealed that the thermal stability increased in the order of $Ti_{50}Cu_{32}Ni_{15}Sn_3$, $Ti_{50}Cu_{25}Ni_{20}Sn_5$, and $Ti_{50}Cu_{23}Ni_{20}Sn_7$.

  • PDF

Development of Ti-Fe-X metal hydride electrode by mechanical alloying (기계적 합금화법에 의한 Ti-Fe-X계 수소 저장합금의 제조에 관한 연구)

  • Ha, Chang-Jin;Lee, Gyeong-Seop
    • Korean Journal of Materials Research
    • /
    • v.5 no.1
    • /
    • pp.112-122
    • /
    • 1995
  • Metal hydride alloys of TiFe based system have been produced by mechanical alloying(MA) method and their electrochemical characteristics have been evaluated for application for Ni/MH battery electrode. These alloys became amorphous after 36hrs ball milling and easily activated electrochemically. All MA amorphous alloys reached at the first charge/discharge cycle the maximum capacity which was 2-3 times higher than the crystalline state. But their cyclic lives were much inferior to the crystalline state. Alloying elements such as Ni, Co, Cr, Mo substituting Fe greatly improved the capacity and 180 mAh/g capacity was obtained in an alloy of TiFe_{0.6}Ni_{0.1}Co_{0.1}Cr_{0.1}Mo_{0.1}$.

  • PDF