• Title/Summary/Keyword: amorphous alloys

Search Result 256, Processing Time 0.023 seconds

Crystallization Behavior of Al-Ni-Y Amorphous Alloys

  • Na, Min Young;Kim, Kang Cheol;Kim, Won Tae;Kim, Do Hyang
    • Applied Microscopy
    • /
    • v.43 no.3
    • /
    • pp.127-131
    • /
    • 2013
  • The crystallization behavior in the $Al_{87}Ni_3Y_{10}$ and $Al_{88}Ni_3Y_9$amorphous alloys has been investigated. As-quenched $Al_{87}Ni_3Y_{10}$ amorphous phase decomposes by simultaneous formation of Al and intermetallic phase at the first crystallization step, while as-quenched $Al_{88}Ni_3Y_9$ amorphous phase decomposes by forming Al nanocrystals in the amorphous matrix. The density of Al nanocrystals is extremely high and the size distribution is homogeneous. Such a microstructure can result from rapid explosion of the nucleation event in the amorphous matrix or growth of the preexisting nuclei embedded in the as-quenched amorphous matrix. The final equilibrium crystalline phases and their distribution at 873 K are exactly same in both $Al_{87}Ni_3Y_{10}$ and $Al_{88}Ni_3Y_9$ alloys.

Effect of Co-Substitution on the Crystallization and Magnetic Properties of a Mechanically Milled Nd15(Fe1-xCox)77B8 (x=0-0.6) Alloy

  • Kwon, H.W.;Yang, C.J.
    • Journal of Magnetics
    • /
    • v.7 no.4
    • /
    • pp.143-146
    • /
    • 2002
  • Mechanical milling technique is considered to be a useful way of processing the fine Nd-Fe-B-type powder with high coercivity. In the present study, phase evolution of the $Nd_{15}(Fe_{1-x}Co_{x})_{77}B_{8}$ (x=0-0.6) alloys during the high energy mechanical milling and annealing was investigated. The effect of Co-substitution on the crystallization of the mechanically milled $Nd_{15}(Fe_{1-x}Co_{x})_{77}B_{8}$ amorphous material was examined. The Nd-Fe-B-type alloys can be amorphized completely by a high-energy mechanical milling. On annealing of the amorphous material, fine $\alpha$-Fe crystallites form first from the amorphous. These fine $\alpha$-Fe crystallites reacts with the remaining amorphous afterwards, leading to crystallization to $Nd_2Fe_{14}$B phase. The Co-substitution for Fe in $Nd_{15}(Fe_{1-x}Co_{x})_{77}B_{8}$ ($\mu$x=0∼0.6) alloys lower significantly the crystallization temperature of the amorphous phase to the $Nd_2Fe_{14}$B phase. The mechanically milled and annealed $Nd_{15}Fe_{77}B_8$ alloy without Co-substitution exhibits consistently better magnetic properties with respect to the alloys with Co-substitution.

A Study on the Comparison of Brazed Joint of Zircaloy-4 with PVD-Be and Zr-Be Amorphous alloys as Filler Metals (PVD-Be와 비정질 Zr-Be 합금을 용가재로 사용한 Zircaloy-4의 브레이징 접합부의 비교 연구)

  • Hwang, Yong-Hwa;Kim, Jae-Yong;Lee, Hyung-Kwon;Koh, Jin-Hyun;Oh, Se-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.2
    • /
    • pp.113-119
    • /
    • 2006
  • Brazing is an important manufacturing process in the fabrication of Heavy Water Reactor fuel rods, in which bearing and spacer pads are joined to Zircaloy-4 cladding tubes. The physical vapor deposition(PVD) technique is currently used to deposit metallic Be on the surfaces of pads as a filler metal. Amorphous Zr-Be binary alloys which are manufactured by rapid solidification process are under developing to substitute the conventional PVD-Be coating. In the present study, brazed joint with PVD and amorphous alloys of $Zr_{1-x}Be_{x}(0.3{\le}x{\le}0.5)$ as filler metals are compared by mechanism, microstructure and hardness. The thickness of brazed joint with amorphous alloys became much smaller than that of PVD-Be. The erosion of base metal did not occur in the brazed joint with amorphous alloys. The brazing mechanism for PVD-Be seems to be Be diffusion into Zr-4 with capillary action resulting from eutectic reaction while that for amorphous alloys are associated with the liquid phase formation in the brazed joint. The brazed joint microstructure with PVD-Be consists of dendrite while that with amorphous alloys is globular. The $Zr_{0.7}Be_{0.3}$ alloy shows the smooth interface with little erosion in the base metal and is recommended a most suitable brazing filler metal for Zircaloy-4.

  • PDF

A Study on the Methodology of the Plasticity Enhancement of Amorphous Alloys (비정질 합금의 소성 증가 방법에 대한 연구)

  • Park, K.W.;Lee, C.M.;Lee, K.B.;Lee, J.C.
    • Transactions of Materials Processing
    • /
    • v.17 no.7
    • /
    • pp.486-490
    • /
    • 2008
  • This study demonstrates that preloading via the elastostatic compression imposed on amorphous alloys at room temperature induces homogeneous plastic strain associated with structural disordering. This structural disordering causes disorder, which at room temperature creates excess free volume and in turn enhances the plasticity. In this study, we investigated the effects of various parameters, such as stress level, flow rate and preloading time, on the degree of the structural disordering at room temperature. On the basis of the present findings, we proposed a method of enhancing the plasticity of amorphous alloys.

Durability of Nozzle Materials for Strip Casting of Amorphous Alloys (비정질합금 박판 제조용 노즐 재료의 내구성평가)

  • Kang, Bok-Hyun;Kim, Ki-Young
    • Journal of Korea Foundry Society
    • /
    • v.31 no.5
    • /
    • pp.267-273
    • /
    • 2011
  • Erosion and thermal shock resistance of several refractory materials have been investigated, which are expected to be used as nozzles in a planar flow casting equipment for amorphous alloys. The test was conducted on five materials; graphite, boron nitride, fused silica, alumina and zirconia. Test specimens were preheated and dipped into the melt of carbon steel and amorphous alloys. Some test specimens were rotated to develop high erosion and to shorten the test periods. Fused silica and boron nitride specimens showed the excellent erosion and thermal shock resistance irrespective of the kind of melt and melting atmosphere.

A Study on the Crystallization Behavior of Al85Ce5Ni10 Amorphous Ribbon (Al85Ce5Ni10 비정질 리본의 결정화 거동에 관한 연구)

  • Moon, J.T.;Jo, W.M.;Shin, B.M.;Lee, Y.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.3
    • /
    • pp.236-243
    • /
    • 1995
  • Since amorphous alloys have been known to have better mechanical and chemical properties than crystalline alloys of the same composition, a great number of studies on the formation of Al-based amorphous alloys have been carried out actively. However, little has been obtained about the effect of Rare-Earth metal and Transition metal addition on amorphous phase formed by melt spinning method. This study included fabrication of amorphous alloy $Al_{85}Ce_5Ni_{10}$ by melt spinning methods and DTA, XRD, TEM analysis to determine crystalization behavoir. Annealing treatments were carried out in Ar atmosphere under isothermal and nonisothermal conditions. The diffraction pattern of non-heated ribbons showed broad form characteristic of glass metallic alloy. The crystallization of amorphous $Al_{85}Ce_5Ni_{10}$ takes place eutedtoidly by homogeneous formation of Al and MS-1, followed by precipitation of the $Al_{11}Ce_3$ and later $MS-1{\rightarrow}Al_3Ni$ transformation.

  • PDF

The Effect of Sn on the Glass Formation Ability of the Zr-based Amorphous Alloy (Zr-based 비정질 합금의 비정질 특성에 미치는 Sn의 영향)

  • Lee, Byung-Chul;Park, Heong-Il;Park, Bong-Gyu;Kim, Sung-Gyoo
    • Journal of Korea Foundry Society
    • /
    • v.34 no.2
    • /
    • pp.49-53
    • /
    • 2014
  • In commercial Zr-Nb-Cu-Ni-Al amorphous alloys, expensive element, Zr, was substituted to Sn which was cheaper one, and then, glass forming ability, compressive strength and hardness of them were estimated. Even though the Sn was added up to 1.5%, resulting phase was not changed to the crystalline form. It was confirmed by X-ray diffraction and thermal analyses. In the X-ray profiles, there were no peaks for crystalline phases and typical halo pattern for amorphous phase was appeared at the diffraction angle of $35^{\circ}{\sim}45^{\circ}$. Thermal analyses also showed that the Sn modified alloys were corresponded to the amorphous standards where ${\delta}T$(= Tx - Tg) and Trg(= Tg/Tm) affecting to the amorphous forming ability were more than 50K and 0.60 respectively. Compressive strengths were 1.77 GPa, 1.63 GPa, 1.65 GPa and 1.77 GPa for 0%Sn, 0.5%Sn, 1.0%Sn and 1.5%Sn respectively. Hardnesses of the Sn modified alloys were decreased from 752 Hv to 702 Hv in 1.0%Sn and recovered to 746 Hv in 1.5%Sn.

Spontaneous Hall Effect in Amorphous Tb-Fe and Sm-Fe Thin films

  • Kim, T. W.;S. H. Lim;R. J. Gambino
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.337-345
    • /
    • 2000
  • The spontaneous Hall effect in amorphous Tb-Fe and Sm-Fe thin films, which possess excellent magnetic softness, is investigated in this work to seek a possibility of practical applications of these thin films as sensors. The resistivity of Tb-Fe thin films ranges from 180 to 250 Ωcm as the Tb content varies from 35 to 46 at. %. Tb-Fe thin films show negative Hall resistivity ranging from - 7.3 to - 5.0 Ωcm in the same composition range, giving the normalized resistivity ratio in the range of -4.1 to -2.0 %. On the other hand, the resistivity of Sm-Fe thin films ranges from 150 to 166 Ωcm as the Sm content varies from 22 to 31 at. %. Sm-Fe thin films show positive Hall resistivity which varies from 7.1 to 2.8 Ωcm in the same composition range, giving the normalized resistivity ratio in the range of 4.8 to 1.7 %. These values are significantly high compared with the values of other R-T alloys, Tb-Co alloys for example, where the highest reported value is 2.5 %. Between the two different sets of samples, Tb-Fe thin films with perpendicular anisotropy are considered to be more suitable for practical applications, since saturation is reached at a los magnetic field, approximately 2 kOe in a Tb$\sub$35.1/ Fe$\sub$64.9/ thin film, for example.

  • PDF

Cu-based Bulk Amorphous Alloys in the Cu-Zr-Ti-Ni-Pd System (Cu-Zr-Ti-Ni-Pd계 비정질 벌크합금의 형성과 성질)

  • Kim, Sung-Gyoo;Bae, Cha-Hurn
    • Journal of Korea Foundry Society
    • /
    • v.22 no.6
    • /
    • pp.304-308
    • /
    • 2002
  • The new Cu-Zr-Ti-Ni-Pd amorphous alloy system has been introduced and manufactured using melt-spinning and Cu-mold die casting methods. Amorphous formability, the supercooled liquid region before crystallization and mechanical properties of the alloys were examined. The reduced glass transition temperature(Trg = Tg/Tm) and the supercooled liquid region(${\Delta}$Tx = Tx-Tg) of $Cu_{49}Zr_{30}Ti_{10}Ni_5Pb_6$ alloy were 0.620 and 57 K respectively. $Cu_{49}Zr_{30}Ti_{10}Ni_5Pb_6$ amorphous alloy was produced in the rod shape with 2mm diameter using the Cu-mold die casting. The hardness value of the amorphous bulk alloy was 432 DPN.

Fabrication and Mechanical Properties of Ni-based Amorphous Bulk Alloys (Ni기 비정질 벌크합금의 제조와 기계적 성질)

  • Kim, Sung-Gyoo
    • Journal of Korea Foundry Society
    • /
    • v.22 no.6
    • /
    • pp.288-292
    • /
    • 2002
  • Ni-base amorphous alloys were manufactured using melt-spinning and Cu-mold die casting methods. Amorphous formability, the supercooled liquid region before crystallization and mechanical properties were examined. The reduced glass transition temperature and the supercooled liquid region of $Ni_{51} Nb_{20} Zr_9 Ti_9 Co_8 Cu_3$alloy were 0.621 and 46 K respectively. $Ni_{51} Nb_{20} Zr_9 Ti_9 Co_8 Cu_3$ alloy was produced in the rod shape 3mm diameter using the Cu-mold die casting. Hardness, compression strength, elongation and elastic modulus of the alloy were 850 DPN, 2.75 GPa, 1.8% and 150 GPa respectively. Moreover, compression strength of 2.75 GPa was the highest value in the amorphous bulk alloy produced up to now.