• Title/Summary/Keyword: amorphous CoSiB

Search Result 96, Processing Time 0.033 seconds

Thermal Stability, Mechanical Properties and Magnetic Properties of Fe-based Amorphous Ribbons with the Addition of Mo and Nb

  • Han, Bo-Kyeong;Jo, Hye-In;Lee, Jin Kyu;Kim, Ki Buem;Yim, Haein
    • Journal of Magnetics
    • /
    • v.18 no.4
    • /
    • pp.395-399
    • /
    • 2013
  • The metallic glass ribbons of $[(Fe_xCo_{1-x})_{0.75}B_{0.2}Si_{0.05}]_{96}Mo_4$ (x = 0, 0.3, 0.6, 0.9 at.%) and $[(Fe_xCo_{1-x})_{0.75}B_{0.2}Si_{0.05}]_{96}Nb_4$ (x = 0, 0.3, 0.6, 0.9 at.%) were obtained by melt spinning with 25-30 ${\mu}m$ thickness. The thermal stability, mechanical properties and magnetic properties of Fe-Co-B-Si based systems were investigated. The values of thermal stability were measured using differential scanning calorimetry (DSC), including glass transition temperature ($T_g$), crystallization temperature ($T_x$) and supercooled liquid region (${\Delta}T_x=T_x-T_g$). These amorphous ribbons were identified as fully amorphous, using X-ray diffraction (XRD). The mechanical properties of Febased samples were measured by nano-indentation. Magnetic properties of the amorphous ribbons were measured by a vibrating sample magnetometer (VSM). The amorphous ribbons of $[(Fe_xCo_{1-x})_{0.75}B_{0.2}Si_{0.05}]_{96}Mo_4$ (x = 0, 0.3, 0.6, 0.9 at.%) and $[(Fe_xCo_{1-x})_{0.75}B_{0.2}Si_{0.05}]_{96}Nb_4$ (x = 0, 0.3, 0.6, 0.9 at.%) exhibited soft magnetic properties with low coercive force ($H_c$) and high saturation magnetization (Ms).

Influence of Layer-thickness and Annealing on Magnetic Properties of CoSiB/Pd Multilayer with Perpendicular Magnetic Anisotropy (박막 두께 및 열처리가 수직자기이방성을 갖는 CoSiB/Pd 다층박막의 자기적 특성에 미치는 영향)

  • Jung, Sol;Yim, Haein
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.3
    • /
    • pp.76-80
    • /
    • 2016
  • CoSiB is the amorphous ferromagnetic material and multilayer consisting of CoSiB and Pd has perpendicular magnetic anisotropic property. PMA has strong advantages for STT-MRAM. Moreover, amorphous materials have two advantages more than crystalline materials: no grain boundary and good thermal stability. Therefore, we studied the magnetic properties of multilayers consisting of the $Co_{75}Si_{15}B_{10}$ with PMA. In this study, we investigated the magnetic property of the [CoSiB (3, 4, 5, and 6) ${\AA}$/Pd(11, 13, 15, 17, 19,and $24{\AA})]_5$ multilayers and found the annealing temperature dependence of the magnetic property. The annealing temperature range is from room temperature to $500^{\circ}C$. The coercivity and the saturation magnetization of the CoSiB/Pd multilayer system have a close association with the annealing temperature. Moreover, the coercivity especially shows a sudden increasing at the specific annealing temperature.

Temperature Dependence of Magnetization of Amorphous TM_70 Cr_5 Si_10 B_15 (TM=Fe, Co, Ni) Alloys

  • Kim, Kyeong-Sup;Yu, Seong-Cho;Lim, Woo-Young;Myuong, Wha-Nam
    • Journal of Magnetics
    • /
    • v.2 no.4
    • /
    • pp.135-137
    • /
    • 1997
  • We report the salient features of the magnetic properties of amorphous TM70Cr5Si10B15(TM=Fe, Co, Ni) alloys. The temperature dependence of magnetization for amorphous ribbons were measured by a SQUID and a VSM from 5 K to 700 K under an external field of 10 kOe. Except TM70Cr5Si10B15 that shows a paramagnetic behaviour, both Fe and Co based amorphous alloys show a typical ferromagnetic thermo-magnetization curves. For these two ferromagnetic alloys, the saturation magnetization in the temperature range from 5 K to about 0.4 Tc can be descrived by the Bloch relation, Ms (T)=Ms(0) [1-BT3/2-CT5/2]. The spin wave stiffness constants and the range of exchange interaction were analyzed from the magnetization behaviour. The variation of the magnetic properties are discussed and compared with the composition of the alloys.

  • PDF

Magnetic Properties and Crystallization of Co-pt Amorphous Metallic Alloys

  • Yoo, Chung-Sik;Lim, Sung-K.;Yoon, C.S.;Kim, C.K.
    • Journal of Magnetics
    • /
    • v.8 no.3
    • /
    • pp.113-117
    • /
    • 2003
  • $Co_{78-x}Pt_xB_{10}Si_{12}$ alloys were produced using the melt-spin process in order to study the crystallization behavior and ensuing magnetic properties of the $Co_{78-x}Pt_xB_{10}Si_{12}$ (Co-Pt) amorphous alloys as a function of the Pt content. We showed that when $\chi$ $>$ 15 well below its stoichiometric composition, CoPt crystallized in the amorphous alloy, thus greatly altering the crystallized microstructure and magnetic properties during annealing. Below this composition, the main crystallization product was Co with Pt dissolved in its lattice. In spite of the nucleation of CoPt with high magnetic anisotropy, the highest coercivity was obtained when x was 15. It was also concluded that the Pt addition deteriorated the glass stability, triggering the devitrification at a progressively lower temperature.

Effect of Crystallization Treatment on the Magnetic Properties of Amorphous Strips Based on Co-Fe-Ni-B-Si-Cr Containing Nitrogen

  • Cho H.J.;Kwon H.T.;Ryu H.H.;Sohn K.Y.;You B.S.;Park W.W.
    • Journal of Powder Materials
    • /
    • v.13 no.4 s.57
    • /
    • pp.285-289
    • /
    • 2006
  • Co-Fe-Ni-B-Si-Cr based amorphous strips containing nitrogen were manufactured via melt spinning, and then devitrified by crystallization treatment at the various annealing temperatures of $300^{\circ}C{\sim}540^{\circ}C$ for up to 30 minutes in an inert gas $(N_2)$ atmosphere. The microstructures were examined by using XRD and TEM and the magnetic properties were measured by using VSM and B-H meter. Among the alloys, the amorphous ribbons of $Co_{72.6}Fe_{9.8}Ni_{5.5}B_{2.4}Si_{7.1}Cr_{2.6}$ containing 121 ppm of nitrogen showed relatively high saturation magnetization. The alloy ribbons crystallized at $540^{\circ}C$ showed that the grain size of $Co_{72.6}Fe_{9.8}Ni_{5.5}B_{2.4}Si_{7.1}Cr_{2.6}$ alloy containing 121 ppm of nitrogen was about f nm, which exhibited paramagnetic behavior. The formation of nano-grain structure was attributed to the finely dispersed Fe4N particles and the solid-solutionized nitrogen atoms in the matrix. Accordingly, it can be concluded that the nano-grain structure of 5nm in size could reduce the core loss within the normally applied magnetic field of 300A/m at 10kHz.

Magnetic Bias Effects in Field-annealed CoFeSiB Amorphous Ribbons (공기 중에서 자기장 열처리된 CoFeSiB 비정질 리본에서의 자기 바이어스 효과)

  • Cha, Yong-Jun;Jeong, Jong-Ryul;Kim, Cheol-Gi;Kim, Dong-Young;Yoon, Seok-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.6
    • /
    • pp.191-196
    • /
    • 2009
  • Magnetic bias phenomena of field-annealed CoFeSiB amorphous ribbons showing asymmetric giant magnetoimpedance was investigated by MOKE method. The specimens removed the crystalline layer at one surface side by chemical etching were prepared and measured magnetization curves by MOKE to investigate the effect of the crystalline layer on magnetization of inner soft amorphous phase. We observed the shift of hysteresis loop, and concluded that the crystalline layer exerts bias field effect on inner soft amorphous phase and the direction of bias filed is opposite to the magnetization direction of surface crystalline layer.

Fabrication and Magnetic Properties of A New Fe-based Amorphous Compound Powder Cores

  • Xiangyue, Wang;Feng, Guo;Caowei, Lu;Zhichao, Lu;Deren, Li;Shaoxiong, Zhou
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.318-321
    • /
    • 2011
  • A new Fe-based amorphous compound powder was prepared from Fe-Si-B amorphous powder by crushing amorphous ribbons as the first magnetic component and Fe-Cr-Mo metallic glassy powder by water atomization as the second magnetic component. Subsequently by adding organic and inorganic binders to the compound powder and cold pressing, the new Fe-based amorphous compound powder cores were fabricated. This new Fe-based amorphous compound powder cores combine the superior DC-Bias properties and the excellent core loss. The core loss of 500 kW/$m^3$ at $B_m$ = 0.1T and f = 100 kHz was obtained When the mass ratio of FeSiB/FeCrMo equals 3:2, and meanwhile the DC-bias properties of the new Fe-based amorphous compound powder cores just decreased by 10% compared with that of the FeSiB powder cores. In addition, with the increasing of the content of the FeCrMo metallic glassy powder, the core loss tends to decrease.

Corrosion Characteristics of Amorphous Alloy Ribbon ($Fe_{70}Cr_5Si_{10}B_{15}$ and $Co_{70}Cr_5Si_{10}B_{15}$) in Hydrochloric Acid Aqueous Solution

  • Choi, Chil-Nam;Hyo, Kyung-Yang;Yang, Myung-Sun
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2001.05a
    • /
    • pp.236-237
    • /
    • 2001
  • In this study, experiments were carried out to measure the variations in the corrosion potential and current density of polarization curves with amorphous $Fe_{70}Cr_5Si_{10}B_{15}$ and $Co_{70}Cr_5Si_{10}B_{15}$ alloy ribbon. The results were particularly examined to identify the influences of corrosion potential including various conditions such as hydrochloric acid, temperature, salt, pH, and oxygen. The optimum conditions were established with variations including temperature, salt, pH, oxygen, corrosion rate, and resistance of corrosion potential. The mass tranfer coefficient(${\alpha}$) value was determined with the Tafel's slope for the anodic dissolution based on the polarization effect with optimum conditions. The second anodic current density peak and maximum passive current density were designated as the critical corrosion sensitivity($I_{r}/I_{f}$).

  • PDF