• Title/Summary/Keyword: ammonium fumarate

Search Result 2, Processing Time 0.019 seconds

Studios on the Glutamic Acid Production by an Alkalophilic Bacterium (알칼리성 세균에 의한 글루탐산 생산에 관한 연구)

  • Cho, Kae-Ran;Lee, Kang-Man;Bae, Moo
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.6
    • /
    • pp.563-567
    • /
    • 1989
  • An alkalophilic bacterium isolated from compost was selected, identified and tested for the production of glutamic acid from ammonium fumarate. The bacterium was closely related to Bacillus brevis. The conditions for glutamic acid production were pH 8.0, 2% fumaric acid, and 0.8% nutrient broth. The mechanism of glutamic acid formation in this strain was postulated as following scheme. (1) Ammonium fumarate longrightarrow Aspartic acid (2) Aspartic acid + $\alpha$-Ketoglutaric acid longrightarrow Glutamic acid + Oxaloacetic acid.

  • PDF

Optimization of Culture Conditions for the Production of Pyrimidine Nucleotide N-Ribosidase from Pseudomonas oleovorans (Pseudomonas oleovorans의 pyrimidine nucleotide N-ribosidase의 생성 최적조건)

  • Yu, Tae-Shick
    • Journal of Life Science
    • /
    • v.14 no.4
    • /
    • pp.608-613
    • /
    • 2004
  • Pyrimidine nucleotide N-ribosidase (pyrimidine 5'-nucleotide phosphoribo (deoxyribo) hydrolase/pyrimidine 5'-nucleoude nucleosidase, EC 3.2.2.10) directly catalyzes pyrimidine 5'-nucleotide to pyrimidine base and ribose (deoxyribo) 5-phosphate. In order to clarify the best nutritional conditions for the growth and the pyrimidine nucleotide N-ribosidase production of Pseudomonas oleovorans ATCC 8062 the effects of various nutrients such as different carbon and nitrogen sources were studied. For the both the growth and the enzyme production, 2% fumarate, 1.5% peptone, 5% corn steep liquor (CSL) and 1% ammonium chloride were excellent carbon and nitrogen sources, respectively. Optimum pH, temperature, and cultivation time for the enzyme production were 7.0, $28^{\circ}C$, and 48 h, respectively. The pyrimidine nucleotide N-ribosidase of P. oleovorans ATCC 8062 was not induced by UMP and its derivatives, and was constitutive enzyme.