• Title/Summary/Keyword: ammonification

Search Result 25, Processing Time 0.018 seconds

Effect of Organic Fertilizer as Bio-com Application on the Changes of Soil Microorganisms, Gas Evolution, and Mineral-N Transformation in Submerged Condition (유기질비료(有機質肥料) Bio-com 시용(施用)이 토양(土壤)의 미생물상(微生物相) 및 화학성(化學性)에 미치는 영향(影響))

  • Kim, Jeong-Je;Lee, Sang-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.4
    • /
    • pp.351-357
    • /
    • 1987
  • A laboratory experiment was conducted to find out the effect of organic fertilizer as Bio-com$^{(R)}$ on the changes of pH and Eh values, gas evolution, ammonification and nitrification, and microbial population with farmer's compost and refused mushroom compost in submerged paddy condition. The results obtained are summarized as follows: 1. Application of compost and refused mushroom compost was increased the pH values than that of NPK alone. Organic fertilizer of Bio-com$^{(R)}$ showed the same results of the farmer's compost or refused mushroom compost. 2. Population of soil microbes as bacteria, actinomycetes and fungi was increased by application of compost, refused mushroom compost and Bio-com$^{(R)}$. Moreover, the results were pronounced more with the addition of NPK. 3. The application of Bio-com$^{(R)}$ was effected to the increase of the amount of $NO_3-N$ and the rate of nitrification than NPK, farmer's compost or refused mushroom compost. 4. The amounts of evolved gases as $CH_4$, $CO_2$, and $N_2O$ were not much differed with application of kinds of compost and NPK, but little increasing tendency was observed in application of NPK than that of NPK+kinds of compost.

  • PDF

The Influence of Pesticides on Some Chemical and Microbiological Properties Related to Soil Fertility -I. Effects of Herbicide (CNP) on Some Soil Chemical Factors Concerning Nitrogen Mineralization (농약제(農藥劑)의 시용(施用)이 토양(土壤)의 비옥성(肥沃性) 및 미생물상(微生物相)에 미치는 영향(影響) -I. CNP 시용(施用)이 토양(土壤)의 pH, Eh 및 질소무기화(窒素無機化)에 미치는 영향(影響))

  • Ryu, Jin-Chang;Araragi, Michio;Koga, Hiroshi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.4
    • /
    • pp.372-381
    • /
    • 1983
  • A laboratory experiment was performed to investigate the effects on redox potential of submerged soil by application of CNP herbicide (2, 4, 6-Trichlorophenyl-4-Nitrophenyl ether) with or without rice straw. Two soils, sandy loam and clay loam textured, were incubated for sixty days at a constant temperature, $25^{\circ}C$. Sampling and analysis of pH, Eh and nitrogen mineralization were carried out during the incubation. The results were summarized as follows. 1. The CNP application decreased redox potential and increased soil pH. The higher the concentration of applicated CNP was, the effects on soil Eh and pH were higher. When rice straw was used with CNP, the Eh of soil remarkably decreased, but seperating the individual effects of rice straw and CNP was impossible in this study. 2. Ammonification increased as the concentration of applied CNP increased regardless of rice straw application or not. It was higher in sandy loam soil than clay loam soil. 3. Nitrification decreased as the concentration of applied CNP increased, especially in the sandy loam soil. Rice straw application reduced nitrification.

  • PDF

Studies on the Exchangeable Potassium of Paddy Soil and it's Activity Ratio to Other Cations (논토양의 치환성(置換性)칼륨 함량(含量)과 다른 양(陽)이온에 대한 칼륨의 활동량비(活動量比)에 관한 연구)

  • Oh, Wang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.13 no.3
    • /
    • pp.77-83
    • /
    • 1981
  • In order to obtain an imformation on the exchangeable potassium and it's activity ratio to other cations in wet paddy top soil grown by rice, soil samples were taken from bottomless middle size (60cm in dia, and height, respectively) round concrete pot being car ride out with an experiment on the split application of potassium in relation to lime and analysed. The pot experiment was being conducted from 1974 at a farm of the City University of Seoul and the wet soil samples were taken from the paddy in the year of 1976. The samples were extracted with $0.1N-AlCl_3$ solution and analysed regarding the elements. Results obtained are as follows : 1. Less exchangeable potassium was extracted from the soils limed than those unlimed when the same amount of potassium was applied immediatly after flooding. However, when the Potassium was applied two weeks after flooding, the reverse was observed. The fact that the exchangeable potassium is increased in the case that potassium fertilizer applied two weeks after flooding explained as due either to the prohibiting effect of iron or less abserption of potassium by the crop. 2. A remarkable decrease of exchangeable potassium of soils was observed during the vigorous growth stage of rice. 3. The activity ratio of $\frac{K}{(Fe^{{+}{+}}){\frac{1}{2}}}$ was remarkabley low after July 16th at which the soil was considerably reduced. 4. The activity ratio $\frac{K^+}{NH^+}$ of limed soil lasted highly until July 16th. It may be resulted from slow progress of ammonification caused by high pH. 5. A positive correlation was found between $Fe^{{+}{+}}$ and $Ca^{{+}{+}}$ under reduced condition. But there was no correlation between $Fe^{{+}{+}}$ and $K^+$ or $NH^+_4$, because that the concentrations of $K^+$ and $NH^+_4$ in soil fluctuates during growing season.

  • PDF

Analysis of the Benthic Nutrient Fluxes from Sediments in Agricultural Reservoirs used as Fishing Spots (낚시터로 활용중인 농업용 저수지의 퇴적물 내 영양염류 용출 분석)

  • Joo, Jin Chul;Choi, Sunhwa;Heo, Namjoo;Liu, Zihan;Jeon, Joon Young;Hur, Jun Wook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.11
    • /
    • pp.613-625
    • /
    • 2017
  • For two agricultural reservoirs that are rented for fishing spots, benthic nutrient fluxes experiment were performed two times with two sediments from fishing-effective zone and one sediment from fishing-ineffective zone using laboratory core incubation in oxic and anoxic conditions. During benthic nutrient fluxes experiment, the changes in DO, EC, pH, and ORP in the supernatant were not significantly different between fishing-effective zone and fishing-ineffective zone, and were similar to the sediment-hypolimnetic diffused boundary layer in agricultural reservoir. Except for $NO_3{^-}-N$, more benthic nutrient fluxes of $NH_4{^+}-N$, T-P, and $PO{_4}^{3-}-P$ from sediment to hypolimnetic was measured in anoxic than in oxic conditions (p<0.05). As the DO concentration in hypolimnetic decreases, the microorganism-mediated ammonification is promoted, the nitrification is suppressed, and finally the $NH_4{^+}-N$ diffuses out from sediment to hypolimnetic. Also, the diffusion of T-P and $PO{_4}^{3-}-P$ from sediments to hypolimnetic is accelerated through the dissociation of the phosphorus bound to both organic matters and metal hydroxides. The difference in the benthic nutrient diffusive fluxes between fishing-effective zone and fishing-ineffective zone was not statistically significant (p>0.05). Therefore, it was found that fishing activities did not increase the benthic nutrient diffusive fluxes to a statistically significant level. Due to the short fishing activities of 10 years and the rate-limited diffusion of the laboratory core incubation, the contribution of fishing activities on sediment pollution is estimated to be low. No significant correlation was found between the total amount of nutrients in sediment and the benthic nutrient diffusive fluxes in both aerobic and anaerobic conditions. Therefore, nutrients input from various nonpoint sources of watersheds are considered to be a more dominant factor rather than fishing activities in water quality deterioration, and both aeration and water circulation in hypolimnetic were required to suppress the anoxic environment in agricultural reservoirs.

Nitrogen Removal Rate of A Subsurface Flow Treatment Wetland System Constructed on Floodplain During Its Initial Operating Stage (하천고수부지 수질정화 여과습지의 초기운영단계 질소제거)

  • Yang, Hong-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.4
    • /
    • pp.278-283
    • /
    • 2003
  • This study was carried out to examine the nitrogen removal rate of a subsurface-flow treatment wetland system which was constructed on floodplain of the Kwangju River from May to June 2001. Its dimensions were 29m in length, 9m in width and 0.65m in depth. A bottom layer of 45cm in depth was filled with crushed granite with about $15{\sim}30\;mm$ in diameter and a middle layer of 10cm in depth had pea pebbles with about 10 mm in diameter. An upper layer of 5 cm in depth contained course sand. Reeds (Phragmites australis) were transplanted on the surface of the system. They were dug out of natural wetlands and stems were cut at about 40 cm height from their bottom ends. Water of the Kwangju River flowed into it via a pipe by gravity flow and its effluent was funneled back into the river. The height of reed stems was 44.2 cm in July 2001 and 75.3cm in September 2001. The number of stems was increased from $80\;stems/m^2$ in July 2001 to $136\;stems/m^2$ in September 2001. Volume and water quality of inflow and outflow were analyzed from July 2001 through December 2001. Inflow and outflow averaged 40.0 and $39.2\;m^3/day$, respectively. Hydraulic detention time was about 1.5 days. Average nitrogen uptake by reeds was $69.31\;N\;mg/m^2/day$. Removal rate of $NO_3-N$, $NH_3-N$, T-N averaged 195.58, 53.65, and $628.44\;mg/m^2/day$, respectively. Changes of $NO_3-N$ and $NH_3-N$ abatement rates were closely related to those of wetland temperatures. The lower removal rate of nitrogen species compared with that of subsurface-flow wetlands operating in North America could be attributed to the initial stage of the system and inclusion of two cold months into the six-month monitoring period. Increase of standing density of reeds within a few years will develop both root zones suitable for the nitrification of ammonia and surface layer substrates beneficial to the denitrification of nitrates into nitrogen gases, which may lead to increment in the nitrogen retention rate.