• Title/Summary/Keyword: ammonia removal

Search Result 566, Processing Time 0.032 seconds

Optimization of soaking in aqueous ammonia pretreatment of canola residues for sugar production (당 생산을 위한 카놀라 부산물의 암모니아 침지 전처리 공정의 최적화)

  • Yoo, Hah-Young;Kim, Sung Bong;Lee, Sang Jun;Lee, Ja Hyun;Suh, Young Joon;Kim, Seung Wook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.114.1-114.1
    • /
    • 2011
  • Bioenergy production from lignocellulosic biomass and agriculture wastes have been attracted because of its sustainable and non-edible source. Especially, canola is considered as one of the best feedstock for renewable fuel production. Oil extracted canola and its agriculture residues are reuseable for bioethanol production. However, a pretreatment step is required before enzymatic hydrolysis to disrupt recalcitrant lignocellulosic matrix. To increase the sugar conversion, more efficient pretreatment process was necessary for removal of saccharification barriers such as lignin. Alkaline pretreatment makes the lignocellulose swollen through solvation and induces more porous structure for enzyme access. In our previous work, aqueous ammonia (1~20%) was utilized for alkaline reagent to increase the crystallinity of canola residues pretreatment. In this study, significant factors for efficient soaking in aqueous ammonia pretreatment on canola residues was optimized by using the response surface method (RSM). Based on the fundamental experiments, the real values of factors at the center (0) were determined as follows; $70^{\circ}C$ of temperature, 17.5% of ammonia concentration and 18 h of reaction time in the experiment design using central composition design (CCD). A statistical model predicted that the highest removal yield of lignin was 54% at the following optimized reaction conditions: $72.68^{\circ}C$ of temperature, 18.30% of ammonia concentration and 18.30 h of reaction time. Finally, maximum theoretical yields of soaking in aqueous ammonia pretreatment were 42.23% of glucose and 22.68% of xylose.

  • PDF

Field Study of Emission Characteristics of Ammonia and Hydrogen Sulfide by Pig Building Types (돈사 작업장 유형에 따른 암모니아와 황화수소의 실내농도 및 발생량에 관한 현장 조사)

  • Kim, Ki Youn;Park, Jae Beom;Kim, Chi-Nyon;Lee, Kyung Jong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.1
    • /
    • pp.36-43
    • /
    • 2006
  • The principal aim of this field study was to determine the concentrations and emissions of gaseous contaminants such as ammonia and hydrogen sulfide in the different types of pig buildings in Korea and allow objective comparison between Korea and the other countries in terms of pig housing types. This field study was performed from May to June and from September to October in 2002. Pig buildings investigated in this research were selected in terms of three criteria; manure removal system, ventilation mode and growth stage of pig. Measurements of concentration and emission of ammonia and hydrogen sulfide in the pig buildings were done in 5 housing types and the visited farms were 15 sites per each housing type. Concentrations of ammonia and hydrogen sulfide were measured at three locations of the central alley in the pig building and emission rates of them were estimated by multiplying the average concentration($mg/m^3$) measured near the air outlet by the mean ventilation rate($m^3/h$) and expressed either per pig of liveweight 75kg(mg/h/pig) or per area($mg/h/m^2$). Concentrations of ammonia and hydrogen sulfide in the pig buildings were averaged to 7.5 ppm and 286.5 ppb and ranged from 0.8 to 21.4 ppm and from 45.8 to 1,235 ppb, respectively. The highest concentrations of ammonia and hydrogen sulfide were found in the mechanically ventilated buildings with slats; 12.1 ppm and 612.8 ppb, while the lowest concentrations of ammonia and hydrogen sulfide were found in the pig buildings with deep-litter bed system(2.2 ppm) and the naturally ventilated pig buildings with manure removal system by scraper(115.2 ppb), respectively(p<0.05). All the pig buildings were investigated not to exceed the threshold limit values(TLVs) of ammonia(25 ppm) and hydrogen sulfide(10 ppm). The mean emissions of ammonia and hydrogen sulfide per pig(75kg in terms of liveweight) and area($m^2$) from pig buildings were 250.2 mg/h/pig and 37.8 mg/h/pig and $336.3mg/h/m^2$ and $50.9mg/h/m^2$, respectively. The pig buildings with deep-litter bed system showed the lowest emissions of ammonia and hydrogen sulfide(p<0.05). However, the emissions of ammonia and hydrogen sulfide from the other pig buildings were not significantly different(p>0.05). Concentrations and emissions of ammonia and hydrogen sulfide were relatively higher in the pig buildings managed with deep-pit manure system with slats and mechanical ventilation mode than the different pig housing types. In order to prevent pig farm workers from adverse health effect caused by exposure to ammonia and hydrogen sulfide in pig buildings, they should wear the respirators during shift and be educated sustainably for the guideline related to occupational safety.

Treatment of Malodorous Waste Air Containing Ammonia Using Biofilter System (바이오필터시스템을 이용한 암모니아 함유 악취폐가스 처리)

  • Lee, Eun Ju;Park, Sang Won;Nam, Dao Vinh;Chung, Chan Hong;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.48 no.3
    • /
    • pp.391-396
    • /
    • 2010
  • In this research the characteristics of ammonia removal from malodorous waste-air were investigated under various operating condition of biofiilter packed with equal volume of rubber media and compost for the efficient removal of ammonia, representative source of malodor frequently generated at compost manufacturing factory and publicly owned facilities. Then the optimum conditions were constructed to treat waste-air containing ammonia with biofilter. Biofilter was run for 30 days(experimental frequency of 2 times/day makes 60 experimental times.) with the ammonia loading from $2.18g-N/m^3/h$ to $70g-N/m^3/h$ at $30^{\circ}C$. The ammonia removal efficiency reached almost 100% for I through IV stage of run to degrade up to the ammonia loading of $17g-N/m^3/h$. However the removal efficiency dropped to 80% when ammonia loading increased to $35g-N/m^3/h$, which makes the elimination capacity of ammonia $28g-N/m^3/h$ for V stage of run. However, the removal efficiency remained 80% and the maximum elimination capacity reached $55g-N/m^3/h$ when ammonia loading was doubled $70g-N/m^3/h$ for VI stage of run. Thus the maximum elimination capacity exceeded $1,200g-N/m^3/day$(i.e., $50g-N/m^3/h$) of the experiment of biofilter packed with rock wool inoculated with night soil sludge by Kim et al.. However, the critical loading did not exceed $810g-N/m^3/day$ (i.e., $33.75g-N/m^3/h$) of the biofilter experiment by Kim et al.. The reason to exceed the maximum elimination capacity of Kim et al. may be attributed to that the rubber media used as biofilter packing material provide the better environment for the fixation of nitrifying and denitrification bacteria to its surface coated with coconut based-activated carbon powder and well-developed inner-pores, respectively.

요소회로 효소 유전자로 형질전환 된 Chinese Hamster Ovary 세포의 암모니아 제거능력과 세포성장률

  • Kim, Hong-Jin;Jeong, Myeong-Il;Jang, Yun-Jeong;Im, Mi-Hui;Kim, Ik-Hwan;Kim, Ik-Yeong
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.66-69
    • /
    • 2001
  • Previously we developed a CHO cell line (CHO-OTC1-A19) expressing the first two enzymes of urea cycle. This cell line showed higher ammonia removal activity and faster growth rate than the vector controlled CHO cells (CHO-neo-5). The purpose of this study was to develop a cell line with higher ammonia removal activity than the cell line developed previously. To accomplish this, we constructed stable CHO cell lines expressing the first three, the first four, or all five enzymes of urea cycle by the stable transfection method. We finally selected CHO-AL-19 cell line expressing the first three, the first four enzymes of the cycle with higher ammonia activity than CHO-OTC1-A19 and CHO-n대-5 cell lines: 40% and 15% higher than those of CHO-neo-5 and CHO-OTC1-A19 cell lines 72 hour after culture started, respectively. It also showed 44% and 10% higher cell viability than CHO-neo-5 and CHO- OTC1-A19 cell lines at higher cell density. In addition, CHO-AL-19 cells showed 45%-60% and about 20% lower ammonia concentration per cell than those of CHO-neo-% and CHO-OTC1-A19 cell lines, respectively. These results indicate that CHO-AL-19 could be used in the production of human therapeutic proteins with higher efficiency.

  • PDF

Estimation of influening factors for efficient anaerobic digestion of high strength ammonia-nitrogen wastewater (고농도 암모니아성 질소 폐수의 효과적인 혐기성 처리를 위한 영향 인자 평가)

  • Park, Seyong;Park, Junghoon;Na, Hoysung;Kim, Moonil
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.5
    • /
    • pp.649-658
    • /
    • 2012
  • In this study, the influencing factors for efficient anaerobic digestion of high strength ammonia-nitrogen wastewater removal were investigated by testing biochemical methane potential test. In the influencing factors, the trace metals which could increase activity of anaerobic microorganisms, microbial concentration and types were evaluated. In the results, trace metals supplementation showed gas production amount higher than those without addition of trace metals. Among the tested trace metals, B, Ni, and Se were preferable to gas production. In the result of gas production according to the microbial concentration, the amount of gas production was proportional to the microbial concentration. In addition, the shortest lag time and the fastest gas production rate were achieved when the highest microbial concentration was tested. granule-type microorganism produced more gas than suspended-type microorganism. In conclusion, the efficient anaerobic digestion for high strength ammonia-nitrogen wastewater removal could be achieved by applying necessary trace metals injection and high concentration granule type microorganism.

Enzyme Immobilized Reactor Design for Ammonia Removal from Waste Water

  • Song, Ju-Yeong;Chung, Soo-Bae
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.2 no.2
    • /
    • pp.77-81
    • /
    • 1997
  • Removal of nitrogen compound from waste water is essential and often accomplished by biological process. To prevent washout and to develop an efficient bioreactor, immobilization of sutibal microorganisms could be sensible approach. Strains and permeabilized cell encapsulated in cellulose nitrate microcapsules and immobilized on polystyrene films were prepared by the method described in the previous study. In the wastewater treatment system, nitrification of ammonia component is generally known as rate controlling step. To enhance the rate of nitrification, firstly nitrifying strains Nitrosomonas europaea(IFO14298), are permeabilized chemically, and immobilized on polystyrene films and secondly oxidation rates of strain system and permeabilized strain system are compared in the same condition. with 30 minute permeabilized cells, it took about 25 hours to oxidize 70% of ammonia in the solution, while it took about 40 hours to treat same amount of ammonia with untreated cells. All the immobilization procedures did not harm to the enzyme activity and no mass transfer resistance through the capsule well was shown. In the durability test of immobilized system, the system showed considerable activity for the repeated operation for 90 days. With these results, the system developed in this study showed the possibility to be used in the actual waste water treatment system.

  • PDF

Transformation of Nitrogen in the Form of Nitrate into Ammonia by Electrochemical Reaction (전기화학적 반응을 이용한 질산성 질소의 암모니아성 질소로 전환)

  • Lee, Jae Kwang;Kim, Doyeon;Tak, Yongsug
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.1013-1016
    • /
    • 2008
  • Nitrogen in the form of nitrate was electrochemically reduced with different cathode materials including Fe, Ni, Cu, and Zn. Zn cathode shows the greatest electrocatalytic activity on the transformation of nitrate ions into ammonia and the $NO_3^-$ removal efficiency has highest value at pH 8.5. Nitrogen in the form of nitrate was initially reduced into nitrite and sequentially, converted into nitrogen inside $NH_3$. Nitrogen in the form of ammonia was completely removed by the reaction with HOCl.

The experimental study for high ammonia nitrogen removal using Bardenpho process with Methanol addition (메탄올주입에 의한 Bardenpho공법에서의 고농도 암모니아성 질소 제거에 관한 실험적 연구)

  • Lee, Byonghi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.2
    • /
    • pp.34-40
    • /
    • 1999
  • Aerobic night-soil treatment effluent containing high concentration of ammonia nitrogen was treated to remove nitrogen using Bardenpho process with Methanol addition. The objective of this study was to investigate the feasibility of complete nitrogen removal at three different HRTs such as 6.25d, 5d, and 3.75d, respectively. At each HRT, the nitrogen removal efficiencies are 92%, 99% and 97% and the required amount of methanol are 3.05gMeOH/gN, 2.75gMeOH/gN, and 3.38gMeOH/gN, respectively. Specific nitrification rates are decreased proportional to HRT and are $0.022gNH_4^+-N/g\;MLVSS{\cdot}day$, $0.0332gNH_4^+-N/g\;MLVSS{\cdot}day$ and $0.051gNH_4^+-N/g\;MLVSS{\cdot}day$ and specific denitification rate are decreased proportional to HRT and are $0.0210g\;N/gMLVSS{\cdot}day$, $0.0330g\;N/gMLVSS{\cdot}day$ and $0.0525g\;N/gMLVSS{\cdot}day$, respectively.

  • PDF

Continuous Removal of Nitrate and Coliform using Bipolar ZVI Packed Bed Electrolytic Cell (영가철 충진 복극전해조를 이용한 질산성질소 및 대장균의 연속식 제거)

  • Jeong, Joo-Young;Park, Jeong-Ho;Choi, Won-Ho;Park, Joo-Yang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.651-658
    • /
    • 2011
  • Nitrate is a common contaminant in industrial wastewater and ground water. The maximum contaminant level set by EPA for nitrate of 10 mg/L as N. In this study, nitrate was removed using bipolar ZVI packed bed electrolytic cell that maximized the contact area between each electrode and contaminants under 600 V. Also this study investigates the simultaneously deals with removal of ammonia by operating air stripping tower. In addition to the air stripping also helped to precipitate iron ions to the form of iron oxides. Bipolar ZVI packed bed electrolytic cell was also effective in removing coliform by electrical power. In the continuous experiments for the simulated wastewater (initial nitrate for 25 mg/L as N), maximum 96.3% removal of nitrate was achieved in the applied 600 V at the flow rate of 6 mL/min.

Effect of Precipitation on Operation Range of the CO2 Capture Process using Ammonia Water Absorbent (암모니아수 흡수제를 이용한 이산화탄소 제거 공정에서 침전생성이 조업영역에 미치는 영향)

  • You, Jong Kyun;Park, Ho Seok;Hong, Won Hi;Park, Jongkee;Kim, Jong-Nam
    • Korean Chemical Engineering Research
    • /
    • v.45 no.3
    • /
    • pp.258-263
    • /
    • 2007
  • Ammonia water was investigated as a new absorbent of the chemical absorption process for the removal of $CO_2$ in flue gas. The suitable range of ammonia water concentration and $CO_2$ loading ($mol\;CO_2/mol\;NH_3$) were decided in the point of view of $CO_2$ absorption capacity and $NH_4HCO_3$ precipitation. The absorption capacity of $CO_2$ and the precipitation of $NH_4HCO_3$ in liquid phase were calculated by the Pitzer model for electrolyte solution. The $CO_2$ absorption capacity of the ammonia water over $5\;molNH_3/kgH_2O$ was higher than that of conventional amine absorbent. The $CO_2$ loadings where precipitation occurred were decided at various absorbent concentrations. Theses values were higher than 0.5 in the concentration range of $5-14\;molNH_3/kgH_2O$ at 293, 313 K. The absorber for the removal of $CO_2$ in flue gas could be operated without $NH_4HCO_3$ precipitation by using high concentration of ammonia water below these $CO_2$ loading values. The optimum temperature of the ammonia water absorbent for removal of $CO_2$ in flue gas was 297-312 K depending on the concentration of ammonia water.