• 제목/요약/키워드: ammonia removal,

검색결과 563건 처리시간 0.027초

Optimal Temperature and Light Intensity for Improved Mixotrophic Metabolism of Chlorella sorokiniana Treating Livestock Wastewater

  • Lee, Tae-Hun;Jang, Jae Kyung;Kim, Hyun-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권11호
    • /
    • pp.2010-2018
    • /
    • 2017
  • Mixotrophic microalgal growth gives a great premise for wastewater treatment based on photoautotrophic nutrient utilization and heterotrophic organic removal while producing renewable biomass. There remains a need for a control strategy to enrich them in a photobioreactor. This study performed a series of batch experiments using a mixotroph, Chlorella sorokiniana, to characterize optimal guidelines of mixotrophic growth based on a statistical design of the experiment. Using a central composite design, this study evaluated how temperature and light irradiance are associated with $CO_2$ capture and organic carbon respiration through biomass production and ammonia removal kinetics. By conducting regressions on the experimental data, response surfaces were created to suggest proper ranges of temperature and light irradiance that mixotrophs can beneficially use as two types of energy sources. The results identified that efficient mixotrophic metabolism of Chlorella sorokiniana for organics and inorganics occurs at the temperature of $30-40^{\circ}C$ and diurnal light condition of $150-200{\mu}mol\;E{\cdot}m^{-2}{\cdot}s^{-1}$. The optimal specific growth rate and ammonia removal rate were recorded as 0.51/d and 0.56/h on average, respectively, and the confirmation test verified that the organic removal rate was $105mg\;COD{\cdot}l^{-1}{\cdot}d^{-1}$. These results support the development of a viable option for sustainable treatment and effluent quality management of problematic livestock wastewater.

염화철 처리 활성탄에 의한 질산염 제거 (Nitrate Removal by $FeCl_3$-Treated Activated Carbon)

  • 정경훈;최형일;정오진
    • 한국환경보건학회지
    • /
    • 제27권1호
    • /
    • pp.63-68
    • /
    • 2001
  • A laboratory experiment was performed to invstigate the nitrate removal using FeCl$_3$ -treated activated carbon. Iron chloride(III) was coated onto the surface of activated carbon. The removal efficiency of nitrate was increased with increasing of FeCl$_3$ was used for coating material. About 22~26mg of Fe per unit g of activated carbon was adsorbed. The nitrate removal was not affected by the pH under the experiment range of pH, but the pH value in solution decrease to 3.5~4.0 after reaction. The removal efficiency of nitrate was increased with increasing of dosage of adsorbents. Ammonia was not detected and the Fe concentration as low as 0.22mg/$\ell$ was desorbed from the adsorbents. The adsorbents was regenerated using KCl solution, and recovery was 76.6% at 1 M of KCl. The adsorption of nitrate by FeCl$_3$-treated activated carbon followed the Freundlich isotherm equation and the Freundlich constant, 1/n, was 0.346. These results showed that the FeCl$_3$-treated activated carbon could serve as the basis of a useful nitrate removal.

  • PDF

질소제거공정과 결합한 2상 혐기성 소화공정에서 돈분폐수의 메탄생성 및 질소제거 (Methane Production and Nitrogen Removal from Piggery Wastewater in the TPAD Coupled with BNR Process)

  • 박노백;박상민;최우영;전항배
    • 한국물환경학회지
    • /
    • 제25권1호
    • /
    • pp.18-25
    • /
    • 2009
  • Nitrogen removal and methane production from piggery wastewater were investigated in two-phase anaerobic digestion (TPAD) coupled with biological nitrogen removal (BNR) process at $35^{\circ}C$. Methane production rate was about $0.7L/L{\cdot}day$ at organic loading rate (OLR) of $1.2g{\cdot}TCOD/L{\cdot}day$ in methanogenic UASB. Conversion efficiency of the removed TCOD into methane in UASB was as high as 72% and overall TCOD removal efficiency in this system was over 97%. Ammonia nitrogen were stably removed in BNR system and overall efficiency were 98%. With recirculation of the nitrified final effluent to TPAD, nitrogen oxides were completely removed by anaerobic denitrification in the acidogenic reactor, which did not inhibit the acidogenic activities. Overall TN removal efficiency in the TPAD-BNR system was as high as 94%.

충진제의 종류에 따른 습식 스크러버의 가스상 물질 제거특성 (Removal Characteristics of Gaseous Contaminants by a Wet Scrubber with Different Packing Materials)

  • 한방우;김학준;김용진;한경수
    • 한국대기환경학회지
    • /
    • 제23권6호
    • /
    • pp.744-751
    • /
    • 2007
  • Wet scrubber is widely used to remove toxic gaseous contaminants in various industries such as semi-conductor industry, display manufacturing industry and so on. In this study, to optimize a packed bed scrubber as one of typical wet scrubber size while keeping its performance, four different packing materials were investigated at different air flow rates, liquid-gas ratios and pH values. Ammonia, hydrochloric acid and hydrofluoric acid were used as test gases to characterize the scrubber performance. Gas removal efficiency increased as the packing size decreased, which resulted in the increase of specific surface area. The increase of air flow rate led to the decrease of gas removal efficiency, while the increase of liquid-gas ratio led to the increase of gas removal efficiency. For the case of $NH_3$ gas, lower pH, and for the cases of HCl and HF, higher pH contributed to higher gas removal efficiency. Gas removal efficiency of a wet scrubber increased in the order of HCl < $NH_3$ < HF according to its water solubility.

Performance of a Biofilter for Odor Removal during Manure Composting

  • Park, K.J.;Hong, J.H.;Choi, M.H.
    • Agricultural and Biosystems Engineering
    • /
    • 제3권2호
    • /
    • pp.59-64
    • /
    • 2002
  • Odor generated during composting of livestock manure is mainly due to ammonia emission. Biofiltration is a desirable method to control composting odor. This study was conducted to analyze the efficiency of using fresh compost as a biofilter. A mixture of cattle manure and recycled compost was composted in a bin equipped with a suction-type blower. The exhaust gas was filtered through the fresh compost. Residence time was controlled by the flow rate of exhaust gas and the depth of filtering materials. At the aeration rate of 30 L/min(experiment I), ammonia reduction rate varied from 100% to -15% for biofilter A(residence time 56.5 s) and almost 100% for biofilter B(residence time 113 s). At the aeration rate of 30 L/min, the cumulative ammonia reduction rate was 80.5% for biofilter A and 99.9% for biofilter B. At the aeration rate of 50 L/min(experiment II), the lowest reduction rate showed a negative value of -350% on the 8th and 9th day for biofilter A(residence time 33.9 5), and 50% on the loth day for biofilter B(residence time 67.8s). At the aeration rate of 50 L/min, the cumulative ammonia reduction rate was 82.5% fur biofilter A and 97.4% for biofilter B. Filtering efficiency was influenced by residence time. The moisture content(MC) and total nitrogen(T-N) of the filtering material were increased by absorbing moisture and ammonia included in the exhaust gas, while pH was decreased and total carbon(T-C) remained unchanged during the filtering operation.

  • PDF

식품 폐수 처리 시설에서 암모니아성 악취제거 세균의 분리 및 특성 분석 (Isolation and Characterization of Ammonia-removing Bacteria from a Food-wastewater Treatment Facility)

  • 오경희;최인학;조영철
    • 대한환경공학회지
    • /
    • 제30권6호
    • /
    • pp.653-658
    • /
    • 2008
  • RABC 처리 공정을 사용하여 고농도 식품폐수를 처리할 때 악취가 적게 발생하는 기작을 밝히기 위하여, RABC 공정으로 부터 암모니아성 악취의 제거능이 우수한 세균을 분리하고 이의 특성 및 제거능을 평가하였다. 분리된 암모니아 제거 세균 중 제거능이 뛰어난 것으로 밝혀진 5종의 세균은 각각 Citrobacter, Enterobacter, Buttiauxella, Shigella, Aeromonas 속에 속하는 세균과 분류학적으로 가장 근접하였으며, 이들 세균은 모두 동물의 내장에서 발견된 것이다. 따라서 본 연구에서 분리된 세균은 폐수 처리시설에 유입된 돼지의 도축 부산물에서 유래한 것으로 판단된다. 암모니아 제거과정에서 아질산염 또는 질산염이 발생하지 않는 것으로 보아, 분리된 세균은 암모니아 동화과정을 통해 폐수 중 암모니아의 농도를 저감시키는 것으로 판단된다. 분리된 세균의 암모니아 제거능이 매우 뛰어난 것으로 측정되었으며, 이러한 결과로 판단할 때 이들이 RABC 폐수 처리 공정의 악취 제거에 중요한 기여를 하고 있는 것으로 보인다.

활성탄에 의한 구리(II) 암모니아 착염이온의 흡착 특성 (Adsorption Characteristics of Ammonia Complex of Copper(II) on Activated Carbon)

  • 홍완해;김정규;나상권
    • 공업화학
    • /
    • 제8권1호
    • /
    • pp.23-28
    • /
    • 1997
  • 활성탄에 의한 암모니아 구리착물의 흡착 특성에 대하여 연구하였다. 활성탄 비표면적을 BET 흡착장치에서 측정하였고, 암모니아수용액에서 암모니아 착물을 이용하여 Cu(II)이온 제거 특성과 활성탄에 의한 착물흡착에서 암모니아착물 형태에 대하여 연구하였다. 실험 결과 비표면적 크기는 mesh No.가 감소할 수록 증가하였고, 활성탄에 의한 Cu(II)이온 흡착은 pH 6 범위가 적합함을 알았다. 또한 암모니아수용액에서 암모니아 구리착물이 활성탄에 흡착되는 형태는 $[Cu(NH_3){_2}]^{2+}$$[Cu(NH_3){_3}]^{2+}$로 흡착됨을 알았으며, 암모니아 농도는 $2.25{\times}10^{-4}{\sim}2.25{\times}10^{-3}(mol/{\ell})$ 범위에서 검토하였다.

  • PDF