• 제목/요약/키워드: aminoacyl-tRNA synthetases

검색결과 13건 처리시간 0.03초

세균의 Methionyl-tRNA Synthetase를 저해하는 새로운 항생물질의 스크리닝 (Screening of New Antibiotics Inhibiting Bacterial Methionyl-tRNA Synthetase)

  • 곽진환;조영준;송난규
    • 약학회지
    • /
    • 제45권3호
    • /
    • pp.245-250
    • /
    • 2001
  • Aminoacyl tRNA synthetases of bacteria are known as potential targets for new anti-microbial agents. To isolate new inhibitors of bacterial methionyl-tRNA synthetases from natural sources, a new target-oriented screening system using whole cells which are over-expressing a target enzyme was developed. Approximately 8,000 culture broths of microorganisms from soils were tested by this screening system. Among them, ten culture broths was found to contain inhibitory activity against methionyl -tRNA synthetases of Escherichia coli. For the validation of the screening system, this new method was compared with in vitro enzymatic method. Seven out of 10 culture broths showed inhibitory activity against methionyl-tRNA synthetases of E. coli. This result showed that the new screening system was comparable to the enzyme assay. Thus we believe that our screening system as a new method can be applied for the screening of new antibiotics inhibiting bacterial methionyl-tRNA synthetases from natural products.

  • PDF

Transfer RNA Acceptor Stem Determinants for Specific Aminoacylation by Class II Aminoacyl-tRNA Synthetases

  • Musier, Karin
    • BMB Reports
    • /
    • 제31권6호
    • /
    • pp.525-535
    • /
    • 1998
  • A critical step in the faithful translation of genetic information is specific tRNA recognition by aminoacyl-tRNA synthetases. These enzymes catalyze the covalent attachment of particular amino acids to the terminal adenosine of cognate tRNA substrates. In general, there is one synthetase for each of the twenty amino acids and each enzyme must discriminate against all of the cellular tRNAs that are specific for the nineteen noncognate amino acids. Primary sequence information combined with structural data have resulted in the division of the twenty synthetases into two classes. In recent years, several high-resolution co-crystal structures along with biochemical data have led to an increased understanding of tRNA recognition by synthetases of both classes. The anticodon sequence and the amino acid acceptor stem are the most common locations for critical recognition elements. This review will focus on acceptor stem discrimination by class II synthetases. In particular, the results of in vitro aminoacylation assays and site-directed and atomic group mutagenesis studies will be discussed. These studies have revealed that even subtle atomic determinants can provide signals for specific tRNA aminoacylation.

  • PDF

Aminoacyl-tRNA Synthetase Cofactor, p43, is a Novel Cytokine and an Immune Modulator: Implications for Autoimmune Diseases and Bacterial Infections

  • Kim, Sung-Hoon
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.77-77
    • /
    • 2003
  • p43 is a protein with complex biological activities. It is first found as a protein associated with macromolecular tRNA synthetase complex. Within this complex, p43 specifically interacts with arginyl-tRNA synthetase to help the substrate tRNA binding to the enzyme. It is also necessary for the cellular stability of arginyl-tRNA synthetase and the molecular association of a few complex-forming tRNA synthetases. (omitted)

  • PDF

Three Common Subunits in the Editing Domains of Class Ia tRNA Synthetases.

  • Lee, Keun-Woo;Kwon, Yong-Jung;Briggs, James M.
    • 산업기술연구
    • /
    • 제24권B호
    • /
    • pp.139-142
    • /
    • 2004
  • To identify conserved structural or functional subunit(s) in the CP1 (editing) domains of class Ia tRNA synthetases, five available structures were compared and analyzed. Through sequence alignments of the CP1 domains, three conserved regions were found near the amino acid binding site in the editing domain. Structural overlapping of the three subunits clearly showed that there exist three common structural subunits in all of the five editing RS structures. The new alignment suggests a translocation movement of the CP1 domain caused by the binding with tRNA. Based on the experimental and modeling results, it is proposed that subunits 1 and 3 accommodate the incoming amino acid binding, while subunit 2 contributes to the interactions with the adenosine ring of the A76 to stabilize the overall tRNA binding.. Since these subunits are critical for the editing reaction, we expect that these key structures should be conserved through all class Ia editing RSs.

  • PDF

백 생명성에 관계하는 신장요인과 Phenylalanyl-tRNA Synthetase 및 tRNA 활성에 미치는 Polyamine의 효과 (Effects of Polyamines on Activities of Elongation Factors, Phenylalanyl-tRNA Synthetase and tRNA in Protein Biosynthesis)

  • Woong Seop Sim
    • Journal of Plant Biology
    • /
    • 제37권3호
    • /
    • pp.325-332
    • /
    • 1994
  • The effects of polyamines on the activities of elongation factors EF-1 and EF-2, phenylalanyl-tRNA synthetase, and tRNA were investigated. The activities of EF-1 and EF-2 were mostly stimulated by spermidine among three kinds of polyamines. The activities of EF-1 and EF-2 were investigated in the presence of spermidine by 230 and 181%, respectively. The activity of phenylalanyl-tRNA synthetase was slightly increased in the presence of polyamines. The effect of spermine on the synthetase was higher than that of the other polyamines. The tRNA activity in the presence fo polyamines was increased by 206% with spermidine, by 144% with spermine, and by 114% with putrescine. According to these results, it is concluded that polyamines in higher plants stimulate the protein biosynthesis by promoting the activities of elongation factors EF-1 and EF-2, aminoacyl-tRNA synthetases, and tRNAs, but the effects of polyamines on the various components for protein biosynthesis are different in according to the kind of polyamines.

  • PDF

Structural Basis for the Antibiotic Resistance of Eukaryotic Isoleucyl-tRNA Synthetase

  • Chung, Scisung;Kim, Sulhee;Ryu, Sung Ho;Hwang, Kwang Yeon;Cho, Yunje
    • Molecules and Cells
    • /
    • 제43권4호
    • /
    • pp.350-359
    • /
    • 2020
  • Pathogenic aminoacyl-tRNA synthetases (ARSs) are attractive targets for anti-infective agents because their catalytic active sites are different from those of human ARSs. Mupirocin is a topical antibiotic that specifically inhibits bacterial isoleucyl-tRNA synthetase (IleRS), resulting in a block to protein synthesis. Previous studies on Thermus thermophilus IleRS indicated that mupirocin-resistance of eukaryotic IleRS is primarily due to differences in two amino acids, His581 and Leu583, in the active site. However, without a eukaryotic IleRS structure, the structural basis for mupirocin-resistance of eukaryotic IleRS remains elusive. Herein, we determined the crystal structure of Candida albicans IleRS complexed with Ile-AMP at 2.9 A resolution. The largest difference between eukaryotic and prokaryotic IleRS enzymes is closure of the active site pocket by Phe55 in the HIGH loop; Arg410 in the CP core loop; and the second Lys in the KMSKR loop. The Ile-AMP product is lodged in a closed active site, which may restrict its release and thereby enhance catalytic efficiency. The compact active site also prevents the optimal positioning of the 9-hydroxynonanoic acid of mupirocin and plays a critical role in resistance of eukaryotic IleRS to anti-infective agents.

Three Common Subunits in Editing Domains of Class Ia tRNA Synthetases

  • Lee, Keun-Woo;Kwon, Yong-Jung;Briggs, James M.
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권2호
    • /
    • pp.207-210
    • /
    • 2007
  • To identify structural or functional common subunit(s) in the CP1 (editing) domains of class Ia tRNA synthetases, five available structures were compared and analyzed. Through the sequence alignments and structural overlapping of the CP1 domains, three conserved regions were identified near the amino acid binding site in the editing domain. Structural overlapping of the three subunits clearly showed the existence of three common structural subunits in all of the five editing RS structures. Based on the established experimental results and our modeling results, it is proposed that subunits 1 and 3 accommodate the incoming amino acid binding, while subunit 2 contributes to the interactions with the adenosine ring of the A76 to stabilize the overall tRNA binding. Since these subunits are critical for the editing reaction, we expect that these key structures should be conserved through the most class Ia editing RSs.

Molecular Docking Study of Aminoacyl-tRNA Synthetases with Ligand Molecules from Four Different Scaffolds

  • Bharatham, Nagakumar;Bharatham, Kavitha;Lee, Yu-No;Kim, Song-Mi;Lazar, Prettina;Baek, A-Young;Park, Chan-In;Eum, Hee-Sung;Ha, Hyun-Joon;Yun, Sae-Young;Lee, Won-Koo;Kim, Sung-Hoon;Lee, Keun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권3호
    • /
    • pp.606-610
    • /
    • 2010
  • Aminoacyl-tRNA synthetases (aaRSs) play vital roles in protein biosynthesis of living organisms and are interesting antibacterial drug targets. In order to find out new inhibitor candidate molecules as antibacterial agent, the binding modes of the candidate molecules were investigated at the active sites of aaRSs by molecular docking study. The docking simulations were performed with 48 compounds from four different scaffolds into the eight different aaRSs. The results show that scaffolds 3 and 4 compounds have consistently better binding capabilities, specifically for HisRS (E. coli) and IleRS (S. aureus). The binding modes of the best compounds with the proteins were well compatible with those of two ligands in crystal structures. Therefore, we expect that the final compounds we present may have reasonable aaRS inhibitory activity.

Methionine Analogue Probes Functionally Important Residues in Active Site of Methionyl-tRNA Synthetase

  • Jo, Yeong-Joon;Lee, Sang-Won;Jo, Myung-Kyun;Lee, Jee-Woo;Kang, Mee-Kyoung;Yoon, Jeong-Hyeok;Kim, Sung-Hoon
    • BMB Reports
    • /
    • 제32권6호
    • /
    • pp.547-553
    • /
    • 1999
  • Aminoacyl-tRNA synthetases are essential enzymes catalyzing the attachment of specific amino acids to cognate tRNAs. In the present work, the substrate analogue L-methionine hydroxamate was used to identify functional residues located in the active site of the E. coli methionyl-tRNA synthetase (MetRS). This compound inhibited bacteria, yeast, and human MetRS activities to a similar degree, suggesting a conserved active site structure and mechanism between MetRSs of different phylogenetic domains. Mutants of the E. coli MetRS resistant to methionine hydroxamate were also isolated. These mutants contained a substitution either at T10, Y15, or Y94. These residues are highly conserved among the different MetRSs and the mutants showed decreased aminoacylation activity, suggesting their functional and structural significances. The putative roles of these residues are discussed on a structural basis.

  • PDF