• Title/Summary/Keyword: amino acids homology

Search Result 213, Processing Time 0.018 seconds

Characterization of a cDNA Encoding Transmembrane Protein 258 from a Two-spotted Cricket Gryllus bimaculatus (쌍별귀뚜라미(Gryllus bimaculatus)의 GbTmem258 cDNA 클로닝과 발현분석)

  • Kisang Kwon;Honggeun Kim;Hyewon Park;O-Yu Kwon
    • Journal of Life Science
    • /
    • v.33 no.10
    • /
    • pp.828-834
    • /
    • 2023
  • The cDNA that encodes transmembrane protein 258 (Tmem258) was cloned from Gryllus bimaculatus and named GbTmem258. This protein comprises 80 amino acids, has no N-glycosylation site, and contains five potential phosphorylation sites at two serines, two threonines, and one tyrosine. The predicted molecular mass of GbTmem258 is 9.06 kDa, and its theoretical isoelectric point is 5.5. The tertiary structure of GbTmem258 was predicted using the available secondary structure information, which suggests the presence of alpha helices (52.5%), random coils (22.5%), extended strands (16.25%), and beta turns (8.75%). Homology analysis revealed that GbTmem258 exhibits high similarity at the amino-acid level to Tmem258 found in other species. The effect of starvation and refeeding on GbTmem258 mRNA expression was also examined in this study. It was found that GbTmem258 mRNA expression in the hindgut progressively increased throughout the starvation period, peaking at almost 1.5 times the control level after six days of starvation. However, refeeding for one to two days after the six-day starvation period restored GbTmem258 mRNA expression to the control level. In fat body, GbTmem258 mRNA expression was almost 3-fold higher during starvation compared to the control level. Refeeding for one to two days after the six-day fast resulted in a decline in the expression to about a 2.5-fold increase over the control level. Throughout the starving and refeeding periods, no other tissues showed any discernible alterations in GbTmem258 mRNA expression.

Expression Pattern of Skeletal-Muscle Protein Genes and Cloning of Parvalbumin mRNA in Dark-banded Rockfish (Sebastes inermis) (볼락(Sebastes inermis) 근육단백질 유전자의 성장단계별 발현 양상과 parvalbumin 유전자 클로닝)

  • Jang, Yo-Soon
    • Korean Journal of Ichthyology
    • /
    • v.23 no.1
    • /
    • pp.1-9
    • /
    • 2011
  • Differentially Expressed Gene (DEG) was obtained from Differential Display Reverse Transcription (DDRT)-PCR using Annealing Control Primer (ACP) to search and clone genes related to developmental stages of Sebastes inermis. By using 120 ACPs, the nucleotide sequences obtained from 16 DEGs showing higher expression in 6-month-old skeletal muscle than 18-month-old ones and from 22 DEGs displaying stronger expression in 18-month-old than 6-month-old were analyzed and BLAST was conducted. The results identified that DEGs shared 69~95% homology with genes of parvalbumin (PVALB), nucleoside diphosphate kinase (NDK) B, tropomyosin (TPM), troponin I (TnI), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), muscle-type creatine kinase (CKM2), small EDRK-rich factor 2 (SERF2), adenosine monophosphate deaminase (AMPD), Trimeric intracellular cation channel type A (TRICA), Rho GTPase-activating protein 15 (ARHGAP15), S-formylglutathione hydrolase (Esterase D; ESD), heat shock protein 70 (hsp70), type 1 collagen alpha 2 (COL1A2), glutathione S-transferase, Mid1-interacting protein 1 (Mid1lip1), myosin light chain 1 (MYL1), sarcoplasmic/endoplasmic reticulum calcium ATPase 1B (SERCA1B), and ferritin heavy subunit (FTH1). Expression pattern by developmental stage of DEG14 and PVALB exhibiting strong expression in 6-month-old skeletal muscle was investigated using real time PCR. Expression was reduced as Sebastes inermis grew. Expression of PVALB gene was extremely low after 6 months of age. Expression of CKM2 showed higher expression in 18-month-old skeletal muscle than in 6-month-old muscles, and increased continuously until 4 years old, after which CKM2 expression became gradually reduced. By analysis of tissue-specific expression patterns of DEG, DEG14 was expressed mainly in skeletal muscle, liver, kidney and spleen tissues, whereas PVALB expression was expressed in skeletal muscle and kidney, but not in liver and spleen tissues. CKM2 was expressed in skeletal muscle, kidney, and spleen tissues, but not in liver tissues. PVALB gene was composed of 110 amino acids, which constituted 659 bp nucleotides. The results reported here demonstrate that the expression patterns of parvalbumin and CKM2 could be used as molecular markers for selecting fishes exhibiting fast growth.

Isolation and Characterization of a Novel Flavonoid 3'-Hydroxylase (F3'H) Gene from a Chrysanthemum (Dendranthema grandiflorum) and Its Gamma-ray Irradiated Mutants (감마선 처리에 의한 스프레이형 국화 화색변이체로부터 Flavonoid 3'-Hydroxylase(F3'H) 유전자의 분리 및 특성 구명)

  • Chung, Sung-Jin;Lee, Geung-Joo;Kim, Jin-Baek;Kim, Dong-Sub;Kim, Sang-Hoon;Kang, Si-Yong
    • Horticultural Science & Technology
    • /
    • v.30 no.2
    • /
    • pp.162-170
    • /
    • 2012
  • The objectives of this study were to isolate and the sequence of novel $F3'H$ gene related to an anthocyanin pathway, and to confirm the expression patterns of the gene involved in the flower color variations of chrysanthemum mutants. In this study, we isolated the full-length cDNAs and the genomic DNAs of an $F3'H$ gene from a wild type (WT) chrysanthemum (cv. Argus) and its three color mutants. The sequence analysis revealed a putative open reading frame of 1,527 bp that encodes a polypeptide of 509 amino acids. Sequence homology ranged from 97% to 99% between 'Argus' and its three color mutants. The sequence analysis from the genomic DNA revealed that the chrysanthemum $DgF3'H$ gene consisted of three exons and two introns spanning a 3,830 bp length. The sizes of the gene for three mutants ranged from a shorter size of 3,828 bp to a longer size of 3,838 bp when compared to the size of WT. The total size of the two introns was 2,157 bp for WT, but those for three color mutants ranged from 2,154 bp to 2,159 bp. A result of an RT-PCR analysis indicated that the color variations of the mutants AM1 and AM2 can be partly explained by the structural modification derived from the sequencial changes in the gene caused by gamma ray. A Southern blot analysis revealed that the $DgF3'H$ gene existing as multiple copies in the chrysanthemum genome. A systemic study will be further needed to provide a genetic mechanism responsible for the color mutation and to uncover any involvement of genetic elements for the expression of the $DgF3'H$ gene for the color variation in chrysanthemum.