• 제목/요약/키워드: amino acid analog

검색결과 31건 처리시간 0.055초

Design and Engineering of Antimicrobial Peptides Based on LPcin-YK3, an Antimicrobial Peptide Derivative from Bovine Milk

  • Kim, Ji-Sun;Jeong, Ji-Ho;Kim, Yongae
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권3호
    • /
    • pp.381-390
    • /
    • 2018
  • We have previously derived a novel antimicrobial peptide, LPcin-YK3(YK3), based on lactophoricin and have successfully studied and reported on the relationship between its structure and function. In this study, antimicrobial peptides with improved antimicrobial activity, less cytotoxicity, and shorter length were devised and characterized on the basis of YK3, and named YK5, YK8, and YK11. The peptide design was based on a variety of knowledge, and a total of nine analog peptides consisted of one to three amino acid substitutions and C-terminal deletions. In detail, tryptophan substitution improved the membrane perturbation, lysine substitution increased the net charge, and excessive amphipathicity decreased. The analog peptides were examined for structural characteristics through spectroscopic analytical techniques, and antimicrobial susceptibility tests were used to confirm their activity and safety. We expect that these studies will provide a platform for systematic engineering of new antibiotic peptides and generate libraries of various antibiotic peptides.

Selection of 5-Methyltryptophan and S-(2-Aminoethyl)-L-Cysteine Resistant Microspore-Derived Rice Cell Lines Irradiated with Gamma Rays

  • Kim, Dong-Sub;Lee, In-Sok;Jang, Cheol-Seong;Hyun, Do-Yoon;Lee, Sang-Jae;Seo, Yong-Weon;Lee, Young-Il
    • Journal of Plant Biotechnology
    • /
    • 제5권1호
    • /
    • pp.33-41
    • /
    • 2003
  • Microspore-derived cell lines resistant to 5-methyltryptophan (5MT, a tryptophan analog) or S-(2-aminoethyl)-L-cysteine (AEC, a Iysine analog) were selected in rice by in vitro mutagenesis. For selection of 5MT or AEC resistant cell lines, suspension-cultured cells were irradiated with gamma rays. Thirteen 5MT resistant cell lines were selected and they were able to grow stably at 2 times higher 5MT concentration. A feedback insensitive form of anthranilate synthesis, the pathway specific control enzyme for tryptophan synthesis, was detected from the 5MT resistant lines. Contents of the free amino acids in five resistant lines (MR12-1 to MR12-5) showed a 7.4 to 46.6 times greater level than that in the control culture. Tryptophan, phenylalanine, and tyrosine levels in the shikimate pathway were 28.1 and 22.5 times higher in MR12-3 and MR12 4, respectively, than that measured in the control cells. Four AEC resistant cell lines were isolated from cultures grown on medium containing 1 mM AEC, They were able to grow stably with 2 mM AEC, while sensitive calli were inhibited by 0.5 mM AEC. Aspartate kinase activities of the resistant lines were insensitive to the natural inhibitor, Iysine, and accumulated 2.2 to 12.9-fold higher levels of free Iysine than that of the control cells. Especially, the levels of aspartate, asparagine, and methionine in the aspartate pathway showed higher accumulation in the AEC resistant lines than that in the control cells.

The Effect of pH on the Antioxidative Activity of Melanoidins Formed from Glucose and Fructose with L and D-Asparagine in the Maillard Reaction

  • Kim, Ji-Sang;Lee, Young-Soon
    • Preventive Nutrition and Food Science
    • /
    • 제13권3호
    • /
    • pp.182-189
    • /
    • 2008
  • In this study, the effect of pH on the antioxidative activities of melanoidins formed as a result of the reaction between sugars, glucose (Glc) or fructose (Fru), and amino acids, L-asparagine (L-Asn) and D-asparagine (D-Asn) are examined. For this purpose, antioxidative activities were evaluated on the basis of reducing power, including ferric reducing/antioxidant power (FRAP) and free radical scavenging activity includes 1,1-diphenyl-2-picryl- hydrazil (DPPH) and 2,2'-azinobis(3-ethylbenothiazoline-6-sulfonic acid) diammonium salt (ABTS) and ferrous ion chelating activity. Ethylene diamine tetraacetate (EDTA) and trolox, a water-soluble analog of tocopherol, were used as reference antioxidant compounds. The antioxidative activities of the melanoidins at a pH of 7.0 were greater than those with a pHs of 4.0 and pH 10.0. Especially, it was found that the melanoidins formed from D-isomers are more effective antioxidants in different in vitro assays. The reducing power and chelating activity of the melanoidins formed from the Fru systems were higher than those of the melanoidins formed from the Glc systems. However, the ABTS radical scavenging activity of the melanoidins formed from the Glc systems were higher than those of the melanoidins formed from the Fru systems. In particular, the DPPH radical scavenging activity and the FRAP of the melanoidins showed different antioxidative activities according to pH level.

SB202190- and SB203580-Sensitive p38 Mitogen-Activated Protein Kinase Positively Regulates Heat Shock- and Amino Acid Analog-Induced Heat Shock Protein Expression

  • Kim, Sun-Hee;Han, Song-Iy;Oh, Su-Young;Seo, Myoung-Suk;Park, Hye-Gyeong;Kang, Ho-Sung
    • 대한의생명과학회지
    • /
    • 제9권2호
    • /
    • pp.59-65
    • /
    • 2003
  • When cells are exposed to proteotoxic stresses such as heat shock, amino acid analogs, and heavy metals, they increase the synthesis of the heat shock proteins (HSPs) by activating the heat shock transcription factor 1 (HSF1), whose activity is controlled via multiple steps including homotrimerization, nuclear translocation, DNA binding, and hyperphosphorylation. Under unstressed conditions, the HSF1 activity is repressed through its constitutive phosphorylation by glycogen synthase kinase 3$\beta$ (GSK3$\beta$), extracellular regulated kinase 1/2 (ERK1/2), and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK). However, the protein kinase (s) responsible for HSF1 hyperphosphorylation and activation is not yet identified. In the present study, we observed that profile of p38 mitogen-activated protein kinase (p38MAPK) activation in response to heat shock was very similar to those of HSF1 hyperphosphorylation and nuclear translocation. Therefore, we investigated whether p38MAPK is involved in the heat shock-induced HSF1 activation and HSP expression. Here we show that the p38MAPK inhibitors, SB202190 and SB203580, but not other inhibitors including the MEK1/2 inhibitor PD98059 and the PI3-K inhibitor LY294002 and wortmannin, suppress HSF1 hyperphosphorylation in response to heat shock and L-azetidine 2-carboxylic acid (Azc), but not to heavy metals. Furthermore, heat shock-induced HSF1-DNA binding and HSP72 expression was specifically prevented by the p38MAPK inhibitors, but not by the MEK1/2 inhibitor and the PI3-K inhibitors. These results suggest that SB202190- and SB203580-sensitive p38MAPK may positively regulate HSP gene regulation in response to heat shock and amino acid analogs.

  • PDF

Studies of the Non-Mevalonate Pathway I. Biosynthesis of Menaquinone-7 in Bacillus subtilis II. Synthesis of Analogs of Fosmidomycin as Potential Antibacterial Agents

  • Kim, Dojung;Phillip J. Proteau
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1998년도 Proceedings of UNESCO-internetwork Cooperative Regional Seminar and Workshop on Bioassay Guided Isolation of Bioactive Substances from Natural Products and Microbial Products
    • /
    • pp.158-158
    • /
    • 1998
  • The non-mevalonate pathway is a newly discovered isoprenoid biosynthetic pathway in some bacteria, cyanobacteria, algae and plants. Because isoprenoid metabolites (ubiquinone, menaquinone, undecaprenol) are essential for bacterial growth, this pathway may represent a novel target for antibacterial agents. Antibiotics with a unique mechanism of action are needed to combat the risk of antibiotic resistance that is a current worldwide problem. In order to study this pathway as viable target, it was necessary to verify use of the pathway in our model system, the bacterium Bacillus subtilis. Incubation experiments with [6,6-$^2$H$_2$]-D-glucose and [l-$^2$H$_3$]-deoxy-D-xylulose were conducted to provide labeled menaquinone-7 (MK -7), the most abundant isoprenoid in B. subtilis. $^2$H-NMR analysis of the MK-7 revealed labeling patterns that strongly support utilization of the non-mevalonate pathway. Another approach to study the pathway is by structure activity relationships of proposed inhibitors of the pathway. Fosmidomycin is a phosphonic acid with antibacterial activity known to inhibit isoprenoid biosynthesis in susceptible bacteria and may act by inhibiting the non-mevalonate pathway. Fosmidomycin and an N-methyl analog were synthesized and tested for antibacterial activity. Fosmidomycin was active against Escherichia coli and B. subtilis, while N-formyl-N-methyl-3-amino-propylphosphonic acid was inactive.

  • PDF

4-F-PCP, a Novel PCP Analog Ameliorates the Depressive-Like Behavior of Chronic Social Defeat Stress Mice via NMDA Receptor Antagonism

  • Darlene Mae D., Ortiz;Mikyung, Kim;Hyun Jun, Lee;Chrislean Jun, Botanas;Raly James Perez, Custodio;Leandro, Val Sayson;Nicole, Bon Campomayor;Chaeyeon, Lee;Yong Sup, Lee;Jae Hoon, Cheong;Hee Jin, Kim
    • Biomolecules & Therapeutics
    • /
    • 제31권2호
    • /
    • pp.227-239
    • /
    • 2023
  • Major depressive disorder is a leading cause of disability in more than 280 million people worldwide. Monoamine-based antidepressants are currently used to treat depression, but delays in treatment effects and lack of responses are major reasons for the need to develop faster and more efficient antidepressants. Studies show that ketamine (KET), a PCP analog, produces antidepressant effects within a few hours of administration that lasts up to a week. However, the use of KET has raised concerns about side effects, as well as the risk of abuse. 4 -F-PCP analog is a novel PCP analog that is also an NMDA receptor antagonist, structurally similar to KET, and might potentially elicit similar antidepressant effects, however, there has been no study on this subject yet. Herein, we investigate whether 4-F-PCP displays antidepressant effects and explored their potential therapeutic mechanisms. 4-F-PCP at 3 and 10 mg/kg doses showed antidepressant-like effects and repeated treatments maintained its effects. Furthermore, treatment with 4-F-PCP rescued the decreased expression of proteins most likely involved in depression and synaptic plasticity. Changes in the excitatory amino acid transporters (EAAT2, EAAT3, EAAT4) were also seen following drug treatment. Lastly, we assessed the possible side effects of 4-F-PCP after long-term treatment (up to 21 days). Results show that 4-F-PCP at 3 mg/kg dose did not alter the cognitive function of mice. Overall, current findings provide significant implications for future research not only with PCP analogs but also on the next generation of different types of antidepressants.

Isolation of Intestinal Glucose Uptake Inhibitor from Punica granatum L.

  • Kim, Hye-Kyung;Baek, Soon-Sun;Cho, Hong-Yon
    • Preventive Nutrition and Food Science
    • /
    • 제16권2호
    • /
    • pp.135-141
    • /
    • 2011
  • Inhibition of intestinal glucose uptake is beneficial in reducing the blood glucose level for diabetes. To search for an effective intestinal glucose uptake inhibitor from natural sources, 70 native edible plants, fruits and vegetables were screened using Caco-2 cells and fluorescent D-glucose analog 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-D-glucose (2-NBDG). A compound that was able to inhibit glucose uptake was isolated from methanol extract of Punica granatum L. and called PG-1a. PG-1a appears to be a phthalic acid-diisononyl ester- like compound (PDE) with molecular weight of 418. The inhibitory effect of PG-1a on intestinal glucose uptake was dose-dependent with 89% inhibition at $100\;{\mu}g$/mL. Furthermore, the intestinal glucose uptake inhibitory effect of PG-1a was 1.2-fold higher than phlorizin, a well known glucose uptake inhibitor. This study suggests that PG-1a could play a role in controlling the dietary glucose absorption, and that PG-1a can effectively improve the diabetic condition, and may be used as an optional therapeutic and preventive agent.

어류 CHSE-214와 인간 HeLa 세포에서의 열충격에 의한 Heat Shock Protein의 발현 (Expression of the Heat Shock Proteins in HeLa and Fish CHSE-214 Cells Exposed to Heat Shock)

  • 공회정;강호성김한도
    • 한국동물학회지
    • /
    • 제39권2호
    • /
    • pp.123-131
    • /
    • 1996
  • In this study, we examined the expression of heat shock proteins (HSPs) in fish cell line CHSE-2lnl and human HeLa cells exposed to heat shock. In fish CHSE-214 cells HSP70 was the major polvpeptide induced by an elevated temperature or an amino acid analog, while in HeLa cells HSP90 as well as HSP70 were prominently enhanced in response to these stresses. Pretreatment of actinomvcin D prior to heat shock completely inhibited the induction of fish HSP70, indicating the transcriptional regulation of fish HSP70 gene expression. In HeLa and CHSE-214 cells either recovering from heat shock or experiencing prolonged heat shock, attenuation in the HSP90 a'nd HSP70 induction occurred but both induction and repression of HSP70 synthesis appear 19 precede those of HSP90. Moreover, attenuation did not occur in the syntheses of 40 kDa and 42 kOto proteins which were only induced in CHSE-214 cells. The enhanced syntheses of these he proteins continued as long as CHSE-214 cells were Siven heat shock. These results suggest that down-regulation of HSP syntheses during prolonged heat shock may be controlled by several different. as vet undefined, mechanisms.

  • PDF

폐렴구균 알코올탈수소효소의 세포 특이성 및 세포내 분포 (Immunological Characterization and Localization of the Alcohol-dehydrogenase in Streptococcus pneumoniae)

  • 권혁영;박연진;표석능;이동권
    • 미생물학회지
    • /
    • 제37권3호
    • /
    • pp.221-227
    • /
    • 2001
  • 열충격 단백질(heat shock protein: HSP)은 변성된 단백질의 응집을 방지하여 가혹한환경에서 병원균의 생존을 증가시킨다. 세균에 알코을 stress를 가하면 다량의 DnaK와 GronEL이 유도되지만 폐렴구균에서는 DnaK와 GroEL이 전혀 유도되지 않는 대신 알코올탈수소효소(alcohol dehydrogenase : ADH)가 유도되었다. 이런 특성은 폐렴구균 ADH가 HSP처럼 chaperone 기능을 수행라고 있을 가능성을 제시하고 있으므로 본 연구에서는 일차적으로 ADH 유전자를 확인하고 ADH 의 면역특성 및 세포내 분포를 측정하였다. 폐렴구균 ADH는 이질아메바 ADH2 및 대장균 ADH 와 높은 유사성을 나타냈으며 883 개의 아미노산으로 구성된 등전점 6.09의 단백질로 추정된다. 그러나 폐렴구균 ADH와 유사성이 높은 대장균, 유산균 및 황색포도상구균의 용해액을 폐렴구균 ADH 항체와 immunoblot을 실시하였을 때 전혀 반응하지 않았다. 또한 세포질, membrane, periplasm에 있는 단백질 분획 및 폐렴구균 배양 상등액을 ADH 항체와 immune blot을 실시하였을 때 ADH 는 열충격에 관계없이 세포 밖으로 분비되는 단백질임을 확인하였다. 이런 결과는 폐렴구균 ADH가 진단용항원 및 백신으로 개발될 수 있는 가능성을 제시하고 있다.

  • PDF

Characterization of a Biflaviolin Synthase CYP158A3 from Streptomyces avermitilis and Its Role in the Biosynthesis of Secondary Metabolites

  • Lim, Young-Ran;Han, Songhee;Kim, Joo-Hwan;Park, Hyoung-Goo;Lee, Ga-Young;Le, Thien-Kim;Yun, Chul-Ho;Kim, Donghak
    • Biomolecules & Therapeutics
    • /
    • 제25권2호
    • /
    • pp.171-176
    • /
    • 2017
  • Streptomyces avermitilis produces clinically useful drugs such as avermectins and oligomycins. Its genome contains approximately 33 cytochrome P450 genes and they seem to play important roles in the biosynthesis of many secondary metabolites. The SAV_7130 gene from S. avermitilis encodes CYP158A3. The amino acid sequence of this enzyme has high similarity with that of CYP158A2, a biflaviolin synthase from S. coelicolor A3(2). Recombinant S. avermitilis CYP158A3 was heterologously expressed and purified. It exhibited the typical P450 Soret peak at 447 nm in the reduced CO-bound form. Type I binding spectral changes were observed when CYP158A3 was titrated with myristic acid; however, no oxidative product was formed. An analog of flaviolin, 2-hydroxynaphthoquinone (2-OH NQ) displayed similar type I binding upon titration with purified CYP158A3. It underwent an enzymatic reaction forming dimerized product. A homology model of CYP158A3 was superimposed with the structure of CYP158A2, and the majority of structural elements aligned. These results suggest that CYP158A3 might be an orthologue of biflaviolin synthase, catalyzing C-C coupling reactions during pigment biosynthesis in S. avermitilis.