• Title/Summary/Keyword: amine oxidase

Search Result 22, Processing Time 0.018 seconds

Anti-inflammatory and anti-oxidative effects of 3-(naphthalen-2-yl(propoxy)methyl)azetidine hydrochloride on β-amyloid-induced microglial activation

  • Yang, Seung-Ju;Kim, Jiae;Lee, Sang Eun;Ahn, Jee-Yin;Choi, Soo Young;Cho, Sung-Woo
    • BMB Reports
    • /
    • v.50 no.12
    • /
    • pp.634-639
    • /
    • 2017
  • We aimed to assess the anti-inflammatory and antioxidative properties of KHG26792, a novel azetidine derivative, in amyloid ${\beta}$ ($A{\beta}$)-treated primary microglial cells. KHG26792 attenuated the $A{\beta}-induced$ production of inflammatory mediators such as IL-6, $IL-1{\beta}$, $TNF-{\alpha}$, and nitric oxide. The levels of protein oxidation, lipid peroxidation, ROS, and NADHP oxidase enhanced by $A{\beta}$ were also downregulated by KHG26792 treatment. The effects of KHG26792 against the $A{\beta}-induced$ increases in inflammatory cytokine levels and oxidative stress were achieved by increasing the phosphorylation of $Akt/GSK-3{\beta}$ signaling and by decreasing the $A{\beta}-induced$ translocation of $NF-{\kappa}B$. Our results provide novel insights into the use of KHG26792 as a potential agent against $A{\beta}$ toxicity, including its role in the reduction of inflammation and oxidative stress. Nevertheless, further investigations of cellular signaling are required to clarify the in vivo effects of KHG26792 against $A{\beta}-induced$ toxicity.

Network Pharmacology: Prediction of Astragalus Membranaceus' and Cornus Officinalis' Active Ingredients and Potential Targets to Diabetic Nephropathy (네트워크 약리학을 통한 당뇨병성 신병증에서의 황기와 산수유의 활성 성분 및 잠재 타겟 예측)

  • Lee, Keun-Hyeun;Rhee, Harin;Jeong, Han-Sol;Shin, Sang Woo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.31 no.6
    • /
    • pp.313-327
    • /
    • 2017
  • The purpose of this study is to predict the effects of macroscopic and integrative therapies by finding active ingredients, potential targets of Astragalus membranaceus (Am) and Cornus officinalis (Co) for diabetic nephropathy. We have constructed network pharmacology-based systematic and network methodology by system biology, chemical structure, chemogenomics. We found several active ingredients of Astragalus membranaceus (Am) and Cornus officinalis (Co) that were speculated to bind to specific receptors which had been known to have a role in the progression of diabetic nephropathy. Four components of Am and eleven components of Co could bind to iNOS; two ingredients of Am and six ingredients of Co could docking to cGB-PDE; one component of Am and nine components of Co could bind to ACE; three ingredients of Co with neprilysin; three components of Co with ET-1 receptor; four ingredients of Am and fourteen ingredients of Co with mineralocorticoid receptor; one component of Am and seven components of Co with interstitial collagenase; one ingredient of Am and ten ingredients of Co with membrane primary amine oxidase; one component of Am and four components of Co with JAK2; two ingredients of Am and one ingredient of Co with MAPK 12; one component of Am and five components of Co could docking to TGF-beta receptor type-1. From this work we could speculate that the possible mechanisms of Am and Co for diabetic nephropathy are anti-inflammatory, antioxidant and antihypertensive effects.