• Title/Summary/Keyword: ameloblastin

Search Result 4, Processing Time 0.018 seconds

Differential Expression of Amelogenin, Enamelin and Ameloblastin in Rat Tooth Germ Development

  • Kim, Jung-Ha;Kim, Hyun-Jin;Kim, Byong-Soo;Kang, Jee-Hae;Kim, Min-Seok;Lee, Eun-Joo;Kim, Sun-Hun
    • International Journal of Oral Biology
    • /
    • v.41 no.2
    • /
    • pp.89-96
    • /
    • 2016
  • Tooth development shows dynamic morphological changes from the stages of cap to hard tissue formation and is strictly regulated during development. In the present study, we compared expression and localization of 3 major enamel matrix proteins in rats: amelogenin, enamel and ameloblastin. DD-PCR and RT-PCR revealed differential expression of the major proteins from the cap stage to root stage. Immunofluorescence staining results indicated that amelogenin was not detected in either inner enamel epithelium or reduced enamel epithelium, but highly immunoreactive in preameloblasts and ameloblasts; in addition, it was sporadically expressed in preodontoblasts abutting preameloblasts. Ameloblastin expression was also observed in not only differentiated ameloblasts but also osteoblasts. Immunoreactivity to ameloblastin in ameloblasts was strong in Tomes' processes. Enamelin was exclusively localized along the entire newly formed and maturing enamel. Enamelin was largely localized in near Tomes' processes and enamel rods in maturing enamel. Alendronate treatment resulted in down-regulation of amelogenin and ameloblastin at both transcription and translation levels; whereas, enamelin expression was unchanged in response to the treatment. These results suggested that amelogenin, ameloblastin and enamelin might be implicated in cell differentiation, adhesion of ameloblasts to enamel and enamel crystallization during enamel matrix formation, respectively.

Expression of Dynamin II in Ameloblast during Mouse Tooth Development (생쥐 치아 발생과정 중 법랑질모세포에서 Dynamin II 발현)

  • Choi, Jung-Mi;Moon, Deog-Hwan;Lee, Jung-Hwa
    • Journal of dental hygiene science
    • /
    • v.12 no.5
    • /
    • pp.486-492
    • /
    • 2012
  • Immunostaing intensity of Dynamin II protein in ameloblast during mouse tooth development showed a significant increase of 48% at the postnatal day 3 and a significant increase of 50% at the postnatal day 5 as compared with the postnatal day 1, but showed a significant decrease of 16% at the postnatal day 7 and a significant decrease of 12% at the postnatal day 10 as compared with the postnatal day 1. From the above results, Dynamin II had relevance to secretion of amelogenin, ameloblastin, enamelin and matrix metalloproteinase-20 proteins for enamel formation in ameloblast. Dynamin II may be involved in the transport of vesicles containing proteins for enamel formation through the acceleration of vesicular formation and may be had a good possibility of secretory regulation of proteins for enamel formation in ameloblast. Therefore, Dynamin II have potential for being used in the field of gene theraphy for periodontal disease and in the regeneration for enamel and dentin tissues lost to dental caries.

Expression and Localization of Keap1 During Amelogenesis in the Developing Molar Germ of Rats

  • Kim, Sun-Hun;You, Yong-Ouk;Ko, Hyun-Mi;Kim, Hyun-Jin
    • International Journal of Oral Biology
    • /
    • v.43 no.4
    • /
    • pp.177-183
    • /
    • 2018
  • The objective of this study was to examine the expression pattern of Kelch-like ECH-associated protein 1 (Keap1) in the maxillary $2^{nd}$ molar germs of rats. We used the maxillary $2^{nd}$ molar germs in rats' pup at postnatal day 3 (bell stage), 6 (crown formation stage) and 9 (root formation stage). The investigation on mRNA and protein levels were done using reverse transcription - polymerase chain reaction and western blot. Localization of Keap 1 in the maxillary $2^{nd}$ molar germs were revealed through immunofluorescence staining. Keap1 from the maxillary 2nd molar germs were mostly manifested on postnatal day 3 and dramatically decreased on postnatal day 6 and 9 at mRNA and protein levels, while amelogenin and ameloblastin increased during the development of maxillary 2nd molar germs. During immunofluorescence analysis, the strong immunoreactivity against Keap1 was detected in the apical side of ameloblasts at the presecretory and secretory stages. However, Keap1 expression was hardly observed in the ameloblasts at the maturation stage. These results shows that Keap1 is strongly expressed in the presecretory and secretory ameloblasts of amelogenesis, and suggest that Keap1 may be a crucial molecule for the regulatory mechanisms tasked with the formation of enamel layer.

AN IMMUNOHISTOCHEMICAL STUDY ON CALCIFYING TISSUES OF THE FLORID CEMENTO-OSSEOUS DYSPLASIA EASILY INVOLVING CHRONIC DIFFUSE SCLEROSING OSTEOMYELITIS (만성 미만성 경화성 골수염을 동반한 개화성 백악질-골 이형성증의 면역조직화학적 연구)

  • Kim, Ji-Hyuck;Jo, Joung-Ae;Kim, Soung-Min;Park, Young-Wook;Huh, Jin-Young;Lee, Suk-Keun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.29 no.5
    • /
    • pp.293-297
    • /
    • 2003
  • Florid cemento-osseous dysplasia (FCOD) is a benign, non-neoplastic lesion characterized by multiple sclerosing masses only within jawbones. It is frequently confused with chronic diffuse sclerosing osteomyelitis (CDSO) in previous literatures. In our study, two cases of FCOD were examined to know the characteristics of their calcifying tissues. The first case was non-infected, while the second case was severely infected, displaying the typical features of CDSO in clinico-radiologic findings. The infected FCOD case showed a lot of bacterial colonies in the main lesion with relatively rare inflammatory reaction. The globular cementum-like materials of FCOD showed woven bone pattern and was positive for Alcian blue stain, and also positive for the antibodies of ameloblastin, bone morphogenetic protein (BMP) -2 and -4. On the other hands, in the immunostains of matrix metalloproteinase (MMP) -3, -9, -10, and $TNF-{\alpha}$, macrophage infiltrated in the FCOD lesion was rarely observed. These data suggest that the cementum-like materials of FCOD contain various matrix proteins, and that the cementum-like materials are relevant to the overgrowth of the bacterial colonies by inhibition of the regional inflammatory reactions.