• 제목/요약/키워드: ambient vibration testing

검색결과 49건 처리시간 0.021초

Ambient vibration testing and seismic performance of precast I beam bridges on a high-speed railway line

  • Toydemir, Burak;Kocak, Ali;Sevim, Baris;Zengin, Basak
    • Steel and Composite Structures
    • /
    • 제23권5호
    • /
    • pp.557-570
    • /
    • 2017
  • In this study, the seismic performance levels of four bridges are determined using finite element modeling based on ambient vibration testing. The study includes finite element modeling, analytical modal analyses, ambient vibration testing and earthquake analyses of the bridges. For the purpose, four prestressed precast I beam bridges that were constructed for the Ankara-Sivas high speed railway line are selected for analytical and experimental studies. In the study, firstly a literature review related to the dynamic behavior of bridges especially precast beam bridges is given and then the formulation part related to ambient vibration testing and structural performance according to Turkish Seismic Code (2007) is presented. Next, 3D finite element models of the bridge are described and modeled using LARSA 4D software, and analytical dynamic characteristics are obtained. Then ambient vibration testing conducted on the bridges under natural excitations and experimental natural frequencies are estimated. Lastly, time history analyses of the bridges under the 1999 Kocaeli, 1992 Erzincan, and 1999 Duzce Earthquakes are performed and seismic performance levels according to TSC2007 are determined. The results show that the damage on the bridges is all under the minimum damage limit which is in the minimum damage region under all three earthquakes.

Output-only modal parameter identification of civil engineering structures

  • Ren, Wei-Xin;Zong, Zhou-Hong
    • Structural Engineering and Mechanics
    • /
    • 제17권3_4호
    • /
    • pp.429-444
    • /
    • 2004
  • The ambient vibration measurement is a kind of output data-only dynamic testing where the traffics and winds are used as agents responsible for natural or environmental excitation. Therefore an experimental modal analysis procedure for ambient vibration testing will need to base itself on output-only data. The modal analysis involving output-only measurements presents a challenge that requires the use of special modal identification technique, which can deal with very small magnitude of ambient vibration contaminated by noise. Two complementary modal analysis methods are implemented. They are rather simple peak picking (PP) method in frequency domain and more advanced stochastic subspace identification (SSI) method in time domain. This paper presents the application of ambient vibration testing and experimental modal analysis on large civil engineering structures. A 15 storey reinforced concrete shear core building and a concrete filled steel tubular arch bridge have been chosen as two case studies. The results have shown that both techniques can identify the frequencies effectively. The stochastic subspace identification technique can detect frequencies that may possibly be missed by the peak picking method and gives a more reasonable mode shapes in most cases.

Structural identification of concrete arch dams by ambient vibration tests

  • Sevim, Baris;Altunisik, Ahmet Can;Bayraktar, Alemdar
    • Advances in concrete construction
    • /
    • 제1권3호
    • /
    • pp.227-237
    • /
    • 2013
  • Modal testing, widely accepted and applied method for determining the dynamic characteristics of structures for operational conditions, uses known or unknown vibrations in structures. The method's common applications includes estimation of dynamic characteristics and also damage detection and monitoring of structural performance. In this study, the structural identification of concrete arch dams is determined using ambient vibration tests which is one of the modal testing methods. For the purpose, several ambient vibration tests are conducted to an arch dam. Sensitive accelerometers were placed on the different points of the crest and a gallery of the dam, and signals are collected for the process. Enhanced Frequency Domain Decomposition technique is used for the extraction of natural frequencies, mode shapes and damping ratios. A total of eight natural frequencies are attained by experimentally for each test setup, which ranges between 0-12 Hz. The results obtained from each ambient vibration tests are presented and compared with each other in detail. There is a good agreement between the results for all measurements. However, the theoretical fundamental frequency of Berke Arch Dam is a little different from the experimental.

Modal and structural identification of a R.C. arch bridge

  • Gentile, C.
    • Structural Engineering and Mechanics
    • /
    • 제22권1호
    • /
    • pp.53-70
    • /
    • 2006
  • The paper summarizes the dynamic-based assessment of a reinforced concrete arch bridge, dating back to the 50's. The outlined approach is based on ambient vibration testing, output-only modal identification and updating of the uncertain structural parameters of a finite element model. The Peak Picking and the Enhanced Frequency Domain Decomposition techniques were used to extract the modal parameters from ambient vibration data and a very good agreement in both identified frequencies and mode shapes has been found between the two techniques. In the theoretical study, vibration modes were determined using a 3D Finite Element model of the bridge and the information obtained from the field tests combined with a classic system identification technique provided a linear elastic updated model, accurately fitting the modal parameters of the bridge in its present condition. Hence, the use of output-only modal identification techniques and updating procedures provided a model that could be used to evaluate the overall safety of the tested bridge under the service loads.

상시 진동을 이용한 댐 수문의 동특성 추정 (Estimation of Dynamic Characteristics of Existing Dam Floodgate Using Ambient Vibration)

  • 김남규;이종재;배정주
    • 비파괴검사학회지
    • /
    • 제31권4호
    • /
    • pp.343-350
    • /
    • 2011
  • 최근 전세계적으로 큰 지진이 빈번히 발생하고 있고, 국내에서도 지진 발생 빈도가 높아짐에 따라 노후화된 토목 구조물에 대한 내진 성능 평가 및 구조 건전성 평가의 중요성이 재조명되고 있다. 하지만 국내 기존 댐 수문에 대한 관련 연구는 미비한 실정이다. 본 연구에서는 댐 수문 내진 성능 평가 및 구조 건전성 평가의 기초자료가 펴는 댐 수문의 통특성 추정을 위하여 댐 수문에 적용할 수 있는 실험기법을 정립하고, 정립된 실험기법을 통하여 두 종류의 댐 수문에 대한 현장 실험을 수행하였다. 동특성 추정에는 모드 해석 방법 중에 하나인 주파수영역분해기법을 이용하였다. 상시진동실험과 강제진동실험을 이용하여 댐 수문의 동특성을 추정함으로써 두 방법의 성능을 비교하였으며, 상시진동실험이 댐 수문의 동특성을 추정하는데 매우 효과적인 방법임을 확인하였다.

Ambient Vibration-Measurement of Real Building Structure by Using Fiber Optic Accelerometer System

  • Kim, Dae-Hyun
    • 비파괴검사학회지
    • /
    • 제26권6호
    • /
    • pp.373-379
    • /
    • 2006
  • Vibration-based structural health monitoring is one of non-destructive evaluation (NDE) techniques for civil infrastructures. This paper presents a novel fiber optic accelerometer system to monitor civil engineering structures and a successful application of the novel sensor system for measuring ambient vibration of a real building structure. This sensor system integrates the Moire fringe phenomenon with fiber optics to achieve accurate and reliable measurements. The sensor system is immune to electromagnetic (EM) interference making it suitable for difficult applications in such environments involving strong EM fields, electrical spark-induced explosion risks, and cabling problems, prohibiting the use of conventional electromagnetic accelerometers. A prototype sensor system has been developed, together with a signal processing software. The experimental studies demonstrated the high-performance of the fiber optic sensor system. Especially, the sensor was successfully used for monitoring a real building on UCI (University of California Irvine, USA).

철근콘크리트조 4층 골조건물의 강제진동실험 (Forced Vibration Testing of a Four-Story Reinforced Concrete Frame Building)

  • 유은종
    • 한국지진공학회논문집
    • /
    • 제11권2호
    • /
    • pp.27-38
    • /
    • 2007
  • 노스리지 지진에 의해 손상을 받은4층 철근콘크리트조 골조건물을 대상으로 선형가진기 및 대용량의 편심가진기를 이용한 강제진동실험과 상시미진동 측정을 실시하였다. 미진동 가속도데이터 및 선형가진기에 의한 백색잡음 실험시의 가속도데이터로부터 구조물식별을 수행하여 7차모드까지의 고유진동수 및 모드감쇠비를 얻었다. 두대의 대용량 편심가진기를 사용하여 얻은 큰 진폭의 조화 진동하에서는 가속도데이터를 사용하여 각 방향 1차모드를 식별하였으며 변위계와 변형게이지를 이용하여 층간변위각, 기둥과 슬래브와 같은 구조부재의 곡률분포를 측정하였다. 각 경우 고유진동수는 진동의 크기가 클수록 낮아졌다. 즉, 편심가진기가력시 고유진동수는 상시미진동시에 비해 $70{\sim}75%$, 선형가진시가력시에 비해 $92{\sim}93%$ 정도로 낮게 나타났다. 이러한 진동수의 감소폭은 지진에 의해 큰 손상을 받았던 건물의 남북방향에서 크게 나타났다.

Ambient and forced vibration testing with numerical identification for RC buildings

  • Aras, Fuat
    • Earthquakes and Structures
    • /
    • 제11권5호
    • /
    • pp.809-822
    • /
    • 2016
  • Reinforced concrete buildings constitute the majority of the building stock of Turkey and much of them, do not comply the earthquake codes. Recently there is a great tendency for strengthening to heal their earthquake performance. The performance evaluations are usually executed by the numerical investigations performed in computer packages. However, the numerical models are often far from representing the real behaviour of the existing buildings. In this condition, experimental modal analysis fills a gap to correct the numerical models to be used in further analysis. On the other hand, there have been a few dynamic tests performed on the existing reinforced concrete buildings. Especially forced vibration survey is not preferred due to the inherent difficulties, high cost and probable risk of damage. This study applies both ambient and forced vibration surveys to investigate the dynamic properties of a six-story residential building in Istanbul. Mode shapes, modal frequencies and damping ration were determined. Later on numerical analysis with finite element method was performed. Based on the first three modes of the building, a model updating strategy was employed. The study enabled to compare the results of ambient and forced vibration surveys and check the accuracy of the numerical models used for the performance evaluation of the reinforced concrete buildings.

Autonomous evaluation of ambient vibration of underground spaces induced by adjacent subway trains using high-sensitivity wireless smart sensors

  • Sun, Ke;Zhang, Wei;Ding, Huaping;Kim, Robin E.;Spencer, Billie F. Jr.
    • Smart Structures and Systems
    • /
    • 제19권1호
    • /
    • pp.1-10
    • /
    • 2017
  • The operation of subway trains induces secondary structure-borne vibrations in the nearby underground spaces. The vibration, along with the associated noise, can cause annoyance and adverse physical, physiological, and psychological effects on humans in dense urban environments. Traditional tethered instruments restrict the rapid measurement and assessment on such vibration effect. This paper presents a novel approach for Wireless Smart Sensor (WSS)-based autonomous evaluation system for the subway train-induced vibrations. The system was implemented on a MEMSIC's Imote2 platform, using a SHM-H high-sensitivity accelerometer board stacked on top. A new embedded application VibrationLevelCalculation, which determines the International Organization for Standardization defined weighted acceleration level, was added into the Illinois Structural Health Monitoring Project Service Toolsuite. The system was verified in a large underground space, where a nearby subway station is a good source of ground excitation caused by the running subway trains. Using an on-board processor, each sensor calculated the distribution of vibration levels within the testing zone, and sent the distribution of vibration level by radio to display it on the central server. Also, the raw time-histories and frequency spectrum were retrieved from the WSS leaf nodes. Subsequently, spectral vibration levels in the one-third octave band, characterizing the vibrating influence of different frequency components on human bodies, was also calculated from each sensor node. Experimental validation demonstrates that the proposed system is efficient for autonomously evaluating the subway train-induced ambient vibration of underground spaces, and the system holds the potential of greatly reducing the laboring of dynamic field testing.

Vibration-Monitoring of a Real Bridge by Using a $Moir\'{e}$-Fringe-Based Fiber Optic Accelerometer

  • Kim, Dae-Hyun;Lee, Jong-Jae
    • 비파괴검사학회지
    • /
    • 제27권6호
    • /
    • pp.556-562
    • /
    • 2007
  • This paper presents the use of a novel fiber optic accelerometer system to monitor ambient vibration (both wind-induced one and vehicle-induced) of a real bridge structure. This sensor system integrates the $Moir\'{e}$ fringe phenomenon with fiber optics to achieve accurate and reliable measurements. A low-cost signal processing unit implements unique algorithms to further enhance the resolution and increase the dynamic bandwidth of the sensors. The fiber optic accelerometer has two major benefits in using this fiber optic accelerometer system for monitoring civil engineering structures. One is its immunity to electromagnetic (EM) interference making it suitable for difficult applications in such environments involving strong EM fields, electrical spark-induced explosion risks, and cabling problems, prohibiting the use of conventional electromagnetic accelerometers. The other is its ability to measure both low- and high-amplitude vibrations with a constantly high resolution without pre-setting a gain level, as usually required in a conventional accelerometer. The second benefit makes the sensor system particularly useful for real-time measurement of both ambient vibration (that is often used for structural health monitoring) and strong motion such as earthquake. Especially, the semi-strong motion and the small ambient one are successfully simulated and measured by using the new fiber optic accelerometer in the experiment of the structural health monitoring of a real bridge.