• Title/Summary/Keyword: ambient excitation

Search Result 87, Processing Time 0.019 seconds

Investigation of mode identifiability of a cable-stayed bridge: comparison from ambient vibration responses and from typhoon-induced dynamic responses

  • Ni, Y.Q.;Wang, Y.W.;Xia, Y.X.
    • Smart Structures and Systems
    • /
    • v.15 no.2
    • /
    • pp.447-468
    • /
    • 2015
  • Modal identification of civil engineering structures based on ambient vibration measurement has been widely investigated in the past decades, and a variety of output-only operational modal identification methods have been proposed. However, vibration modes, even fundamental low-order modes, are not always identifiable for large-scale structures under ambient vibration excitation. The identifiability of vibration modes, deficiency in modal identification, and criteria to evaluate robustness of the identified modes when applying output-only modal identification techniques to ambient vibration responses were scarcely studied. In this study, the mode identifiability of the cable-stayed Ting Kau Bridge using ambient vibration measurements and the influence of the excitation intensity on the deficiency and robustness in modal identification are investigated with long-term monitoring data of acceleration responses acquired from the bridge under different excitation conditions. It is observed that a few low-order modes, including the second global mode, are not identifiable by common output-only modal identification algorithms under normal ambient excitations due to traffic and monsoon. The deficient modes can be activated and identified only when the excitation intensity attains a certain level (e.g., during strong typhoons). The reason why a few low-order modes fail to be reliably identified under weak ambient vibration excitations and the relation between the mode identifiability and the excitation intensity are addressed through comparing the frequency-domain responses under normal ambient vibration excitations and under typhoon excitations and analyzing the wind speeds corresponding to different response data samples used in modal identification. The threshold value of wind speed (generalized excitation intensity) that makes the deficient modes identifiable is determined.

Operational Modal Analysis of a Wind Turbine Wing Using Acoustical Excitation (음향가진을 이용한 풍동터빈 날개의 운전형상 변형 분석)

  • Herlufsen, H.;Konstantin-Hansen, H.;Moller, N.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.385.1-385
    • /
    • 2002
  • Operational Modal Analysis also known as Ambient Modal Analysis has an increasing interest in mechanical cngineering. Especially on big structures where the excitation and not less important the determination of the forces is most often a problem. In a structure like a wind turbine wing where the modes occur both close in frequency and bi-directional the Ambient excitation has big advantages. (omitted)

  • PDF

Effect of excitation type on dynamic system parameters of a reinforced concrete bridge

  • Wahab, M.M. Abdel;De Roeck, G.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.4
    • /
    • pp.387-400
    • /
    • 1999
  • Damage detection in civil engineering structures using the change in dynamic system parameters has gained a lot of scientific interest during the last decade. By repeating a dynamic test on a structure after a certain time of use, the change in modal parameters can be used to quantify and qualify damages. To be able to use the modal parameters confidentially for damage evaluation, the effect of other parameters such as excitation type, ambient conditions,... should be considered. In this paper, the influence of excitation type on the dynamic system parameters of a highway prestressed concrete bridge is investigated. The bridge, B13, lies between the villages Vilvoorde and Melsbroek and crosses the highway E19 between Brussels and Antwerpen in Belgium. A drop weight and ambient vibration are used to excite the bridge and the response at selected points is recorded. A finite element model is constructed to support and verify the dynamic measurements. It is found that the difference between the natural frequencies measured using impact weight and ambient vibration is in general less than 1%.

Detection and quantification of structural damage under ambient vibration environment

  • Yun, Gun Jin
    • Structural Engineering and Mechanics
    • /
    • v.42 no.3
    • /
    • pp.425-448
    • /
    • 2012
  • In this paper, a new damage detection and quantification method has been presented to perform detection and quantification of structural damage under ambient vibration loadings. To extract modal properties of the structural system under ambient excitation, natural excitation technique (NExT) and eigensystem realization algorithm (ERA) are employed. Sensitivity matrices of the dynamic residual force vector have been derived and used in the parameter subset selection method to identify multiple damaged locations. In the sequel, the steady state genetic algorithm (SSGA) is used to determine quantified levels of the identified damage by minimizing errors in the modal flexibility matrix. In this study, performance of the proposed damage detection and quantification methodology is evaluated using a finite element model of a truss structure with considerations of possible experimental errors and noises. A series of numerical examples with five different damage scenarios including a challengingly small damage level demonstrates that the proposed methodology can efficaciously detect and quantify damage under noisy ambient vibrations.

Local damage detection of a fan blade under ambient excitation by three-dimensional digital image correlation

  • Hu, Yujia;Sun, Xi;Zhu, Weidong;Li, Haolin
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.597-606
    • /
    • 2019
  • Damage detection based on dynamic characteristics of a structure is one of important roles in structural damage identification. It is difficult to detect local structural damage using traditional dynamic experimental methods due to a limited number of sensors used in an experiment. In this work, a non-contact test stand of fan blades is established, and a full-field noncontact test method, combined with three-dimensional digital image correlation, Bayesian operational modal analysis, and damage indices, is used to detect local damage of a fan blade under ambient excitation without use of baseline information before structural damage. The methodology is applied to detect invisible local damage on the fan blade. Such a method has a seemingly high potential as an alternative to detect local damage of blades with complex high-precision surfaces under extreme working conditions because it is a noncontact test method and can be used under ambient excitation without human participation.

Vibration performance of composite steel-bar truss slab with steel girder

  • Liu, Jiepeng;Cao, Liang;Chen, Y. Frank
    • Steel and Composite Structures
    • /
    • v.30 no.6
    • /
    • pp.577-589
    • /
    • 2019
  • In this study, on-site testing was carried out to investigate the vibration performance of a composite steel-bar truss slab with steel girder system. Ambient vibration was performed to capture the primary vibration parameters (natural frequencies, damping ratios, and mode shapes). The composite floor possesses low frequency (< 10 Hz) and damping (< 2%). Based on experimental, theoretical, and numerical analyses on natural frequencies and mode shapes, the boundary condition of SCSC (i.e., two opposite edges simply-supported and the other two edges clamped) is deemed more reasonable for the composite floor. Walking excitations by one person (single excitation), two persons (dual excitation), and three persons (triple excitation) were considered to evaluate the vibration serviceability of the composite floor. The measured acceleration results show a satisfactory vibration perceptibility. For design convenience and safety, a crest factor ${\beta}_{rp}$ describing the ratio of peak acceleration to root-mean-square acceleration induced from the walking excitations is proposed. The comparisons of the modal parameters determined by ambient vibration and walking tests reveal the interaction effect between the human excitation and the composite floor.

Operational Modal Analysis of a Wind Turbine Wing Using Acoustical Excitation

  • H. Konstantin Hansen;H. Herlufsen;N. Moller
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.863-868
    • /
    • 2002
  • Operational Modal Analysis also known as Ambient Modal Analysis has an increasing interest in mechanical engineering. Especially on big structures where the excitation and not less important the determination of the forces is most often a problem. In a structure like a wind turbine wing where the modes occur both close in frequency and hi-directional the ambient excitation has big advantages. In this paper modal parameters are identified from the wing by operational modal analysis. For the parameter identification both parametric and non-parametric techniques are used. Advantages and disadvantages are discussed and results from the different techniques are compared

  • PDF

Application of OMA on the bench-scale earthquake simulator using micro tremor data

  • Kasimzade, Azer A.;Tuhta, Sertac
    • Structural Engineering and Mechanics
    • /
    • v.61 no.2
    • /
    • pp.267-274
    • /
    • 2017
  • In this study was investigated of possibility using the recorded micro tremor data on ground level as ambient vibration input excitation data for investigation and application Operational Modal Analysis (OMA) on the bench-scale earthquake simulator (The Quanser Shake Table) for model steel structures. As known OMA methods (such as EFDD, SSI and so on) are supposed to deal with the ambient responses. For this purpose, analytical and experimental modal analysis of a model steel structure for dynamic characteristics was evaluated. 3D Finite element model of the building was evaluated for the model steel structure based on the design drawing. Ambient excitation was provided by shake table from the recorded micro tremor ambient vibration data on ground level. Enhanced Frequency Domain Decomposition is used for the output only modal identification. From this study, best correlation is found between mode shapes. Natural frequencies and analytical frequencies in average (only) 2.8% are differences.

OMA of model chimney using Bench-Scale earthquake simulator

  • Tuhta, Sertac
    • Earthquakes and Structures
    • /
    • v.16 no.3
    • /
    • pp.321-327
    • /
    • 2019
  • This study investigated the possibility of using the recorded micro tremor data on ground level as ambient vibration input excitation data for investigation and application Operational Modal Analysis (OMA) on the bench-scale earthquake simulator (The Quanser Shake Table) for model chimney. As known OMA methods (such as EFDD, SSI and so on) are supposed to deal with the ambient responses. For this purpose, analytical and experimental modal analysis of a model chimney for dynamic characteristics was performed. 3D Finite element model of the chimney was evaluated based on the design drawing. Ambient excitation was provided by shake table from the recorded micro tremor ambient vibration data on ground level. Enhanced Frequency Domain Decomposition is used for the output only modal identification. From this study, best correlation is found between mode shapes. Natural frequencies and analytical frequencies in average (only) 1.996% are different.

Comparison of Damping Ratios by Half Power Bandwidth Method and Synchronized Human Excitation (하프파워법과 인력가진법에 의한 감쇠율 비교)

  • Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.2
    • /
    • pp.95-103
    • /
    • 2008
  • This paper is concerned with the damping ratios of two methods, which are frequency domain and time domain approach. Ambient vibrations and synchronized human excitation test were conducted to three reinforced concrete buildings ranging from eleven to nineteen stories. The performance of the half power bandwidth method was investigated using three kinds of sample size, 1024, 2048, and 4096. The damping ratio by synchronized human excitation ranges from 1.05% to 1.22% in the long direction and from 1.16% to 1.50% in short direction. Damping by half power bandwidth method is slightly more overestimated than the synchronized human excitation due to insufficient record length. Damping evaluation by half power bandwidth method was found to be enhanced by using the narrower bandwidth with long recorded data.

  • PDF