• Title/Summary/Keyword: ambient air pressure

Search Result 164, Processing Time 0.025 seconds

A Study on the Diesel Spray Evaporation and Combustion Characteristics in Constant Volume Chamber (정적연소실내의 디젤분무증발과 연소특성에 관한 연구)

  • Kim, S.H.;Kim, S.J.;Lee, M.B.;Kim, E.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.6
    • /
    • pp.102-109
    • /
    • 1994
  • As a fundamental study to apply high pressure injection system to direct injection diesel engine, fuel injection system and constant volume combustion chamber were made and the behaviors of evaporating spray with the variation of injection pressure and the ambient gas temperature were observed by using high speed camera, and the combusion characteristics with the variation of injection pressure and A/F ratio were analyzed. As injection pressure increases, spray tip penetration and spray angle increase and, as a results spray volume increases. This helps an uniform mixing of fuel and air. Spray liquid core length decreases as ambient gas temperature increases, while it decreases as injection pressure increases but the effect of ambient gas temperature is dorminant. As injection pressure increases, ignition delay is shortened and combustion rate being raised, maximum heat release rate increases. It become clear that High injection pressure has high level of potential to improve the performance of DI-diesel engine.

  • PDF

진공중에서의 알루미나 세라믹스의 Tribology 특성

  • 진동규;이충엽;전태옥;박홍식
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.66-75
    • /
    • 1997
  • This study was undertaken to investigate tribology characteristics of the alumina ceramics($Al_2O_3$) of the various purity for the variation of ambient condition such as air and vacuum. The wear test was carried out under different experimental condition using the wear test device, which was designed for this study, and in which the annular surface of wear testing specimens as well as mate specimen made of STB2 steel, were subjected to sliding speed, applied load and the sliding distance. The results obtained were as follows. As the ambient pressure decreases, the friction coefficient increases because the protective layer made of absorption due to decrease of the amount of ambient gas can not be formed. As the friction coefficient paticularly for 85% alumina lower than 95% and 99.7% in the alumina purity increases by an influence of heat accumulation caused by small elastic modulus and thermal conductivity. The friction surface of ceramics can be protected in the air by the influence of the oxides transfered from STB2. However, in the vacuum, the protective layer made of the absorption substance can not be formed due to the decrease of ambient gas.

  • PDF

An Investigation of the Spray Characteristics according to Injection Conditions for a Gasoline Direct Injector (직분식 가솔린 인젝터의 분사 조건에 따른 분무 특성 분석)

  • 이기형;이창식;이창희;류재덕;배재일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.89-95
    • /
    • 2001
  • Recently GDI(Gasoline Direct Injection) engine is spotlighted to achieve higher thermal efficiency under partial loads and better performance at full loads. To realize this system, it is essential to make both stratified combustion and homogeneous combustion. When compared to PFI(Port Fuel Injection) engine, GDI engine needs more complicated control and optimal design with injection system. In addition, spray pattern must be optimized according to injection timing because ambient pressure in combustion chamber is also varied. Thus spray structure should be analyzed in details to meet various conditions. In this experimental study, two types of visualization system were developed to simulate compression stroke and intake stroke, respectively. With an increase of the ambient pressure, the penetration length tends to decrease due to rising resistance caused by the drag force of the ambient air. Spray characteristics impinged on the piston has a significant effect on mixture stratification around the spark plug. These results provide the information on macroscopic spray structure and design factors far developing GDI injector.

  • PDF

The Effect of the Air Temperature and Air-assisted Pressure on the Fuel Droplet Atomization (분무 공간의 공기온도와 보조공기의 공급압력이 연료입자의 미립화에 미치는 영향)

  • Kim, Y.S.;Lee, J.S.;Yoon, S.H.;Chung, S.S.;Ha, J.Y.
    • Journal of ILASS-Korea
    • /
    • v.3 no.4
    • /
    • pp.16-24
    • /
    • 1998
  • The fuel injection type, in the gasoline engines of atomization of fuel droplet and its distribution hae influenced directly on the decision of engine performance and harmful emission. In this paper, atomization characteristics of fuel spray is investigated with microscopic visualization system. Particle motion analysis system is used to measure the SMD from fuel spray of air-assisted injector by initial factors such as temperature of ambient air and air-assisted pressure. As air-assist pressure and ambientair temperature increase, the SMD is decreased, and its variation is more stable.

  • PDF

A Study on the Characteristics of an Evaporating Diesel Spary Using LIEF Technique (LIEF법을 이용한 증발 디젤 분무의 특성에 관한 연구)

  • Kim, Y.R.;Kim, M.S.;Cho, H.;Min, K.D.
    • Journal of ILASS-Korea
    • /
    • v.7 no.3
    • /
    • pp.18-23
    • /
    • 2002
  • An evaporating diesel spray of a common rail lnjector was visualized by LIEF technique. This technique makes it possible to separate the vapor and liquid phase images. The experiment was conducted in a constant volume vessel to make a high temperature and high pressure condition. Three images(vapor and liquid phase images from LIEF and a liquid phase image from Mie scattering) were taken simultaneously in one spray event. The major experimental parameters are the injection pressure and the ambient gas pressure. Also, a relative SMD distribution in a liquid phase was obtained by the ratio of the intensities of the fluorescence and the Mie scattering. The results show that the injection pressure and the ambient gas pressure have a close relation with the spray development and air-fuel muting process.

  • PDF

Design Performance Analysis of Solid Oxide Fuel Cell/Gas Turbine Hybrid Systems for Various Gas Turbine Pressure Ratios (가스터빈 압력비 변화에 따른 고체 산화물 연료전지/가스터빈 하이브리드 시스템의 설계 성능 해석)

  • Park, Sung-Ku;Kim, Tong-Seop
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.885-890
    • /
    • 2006
  • This study presents analysis results for the hybrid system combining solid oxide fuel cell and gas turbine. Two different system layouts(an ambient pressure system and pressurized system) are considered and their design performance are comparatively investigated taking into account critical design factor, the most critical parameter such as turbine inlet temperature, gas turbine pressure ratio, temperature difference at the fuel cell and fuel cell operating temperature are considered as design constraints. Performance variations according to system layout and design parameters are examined in energetic view point.

  • PDF

Effect of Relative Humidity on Explosion Pressure for Gas Group IIB, IIA, and I (상대습도에 따른 가스 그룹 IIB, IIA, I의 폭발압력 분석)

  • Yongtae Kim;Kihyo Jung
    • Journal of the Korea Safety Management & Science
    • /
    • v.25 no.1
    • /
    • pp.51-58
    • /
    • 2023
  • Determination of explosion reference pressure is important in designing and testing flameproof enclosures (Ex d). Although relative humidity affects to explosion pressure, its effect is not well investigated for the gas group IIB, IIA, and I. This study tested explosion pressure for Ethylene (8 vol.%), Propane (4.6 vol.%), and Methane (9.8 vol.%), which are the representative gas of the gas group IIB, IIA, and I, at ambient temperature and atmospheric pressure (1 atm) under different relative humidity (0% ~ 80%). Ethylene- and Propane-air mixed gases generally tended to decrease as the relative humidity increased; however, explosion pressure was largely dropped at 20% of relative humidity compared to 0% and 10% of relative humidity. On the other hand, Methane-air mixture gas showed similar pressures at 0% and 10% of relative humidity; but no explosion occurred at more than 20%. The results of this study can be used in setting a testing protocol of explosion reference pressure for designing and testing a flameproof enclosure.

Spray Characteristics of the Rocket Oxidizer-rich Preburner Injection System

  • Yang, Joon-Ho;Choi, Seong-Man;Han, Young-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.255-259
    • /
    • 2008
  • This paper presents the spray characteristics of the oxidizer rich preburner injector which can be used in the high-thrust rocket system. We designed the basic shape of the liquid-liquid coaxial swirl injector for the rocket oxidizer rich preburner injection system. To understand the spray angle variation with the high pressure environment, the spray visualization in the high pressure chamber was preformed. Also we measured the droplet velocity, the Sauter Mean Diameter(SMD), the volume flux and the number density with the PDPA system by using water in atmospheric pressure. The results show that the spray angle is reduced by increasing ambient pressure and maximum droplet velocity is shown from a nozzle tip and then the droplet velocity decreases as a spray moves to the downstream. The SMD decreases on the axial distance from 20 mm to 50 mm but it increases over 50 mm. That is due to the increasing number of collision with each droplet and interaction with ambient air on going downstream direction.

  • PDF

An Experimental Study on the Ignition Probability and Combustion Flame Characteristics of Spark-Ignited Direct-Injection CNG (스파크점화직분식 CNG의 점화성 및 연소화염 특성에 대한 연구)

  • Hwang, Seongill;Chung, Sungsik;Yeom, Jeongkuk;Jeon, Byongyeul;Lee, Jinhyun
    • Journal of ILASS-Korea
    • /
    • v.21 no.1
    • /
    • pp.37-46
    • /
    • 2016
  • For the SI engines, at only full load, the pumping loss has a negligible effect, while at part load conditions, the pumping loss increases. To avoid the pumping loss, the spark-ignited engines are designed to inject gasoline directly into the combustion chamber. In the spark-ignited direct-injection engines, ignition probability is important for successful combustion and the flame propagation characteristics are also different from that of pre-mixed combustion. In this paper, a visualization experiment system is designed to study the ignition probability and combustion flame characteristics of spark-ignited direct-injection CNG fuel. The visualization system is composed of a combustion chamber, fuel supply system, air supply system, electronic control system and data acquisition system. It is found that ambient pressure, ambient temperature and ambient air flow velocity are important parameters which affect the ignition probability of CNG-air mixture and flame propagation characteristics and the injected CNG fuel can be ignited directly by a spark-plug under proper ambient conditions. For all cases of successful ignition, the flame propagation images were digitally recorded with an intensified CCD camera and the flame propagation characteristics were analyzed.