• Title/Summary/Keyword: ambient $CO_2$

Search Result 451, Processing Time 0.028 seconds

Impact of Elevated Temperature and CO2 on Growth and Fruit Quality of Pepper (Capsicum annuum L.) (온도 및 CO2 상승이 고추의 생육 및 과실품질에 미치는 영향)

  • Song, Eun Young;Moon, Kyung Hwan;Son, In Chang;Wi, Seung Hwan;Kim, Chun Hwan;Lim, Chan Kyu;Oh, Soonja
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.179-187
    • /
    • 2016
  • This study was conducted to determine the impact of elevated temperature and $CO_2$ concentration based on climate change scenario on growth and fruit quality of pepper (Capsicum annuum L. cv. Muhanjilju) with SPAR (Soil Plant Atmosphere Research) chamber. The intraday temperatures of climate normal years fixed by $20.8^{\circ}C$ during the growing season (May 1~October 30) of climatic normal years (1971~2000) in Andong region. There were treated with 4 groups such like a control group (ambient temperature and 400ppm $CO_2$), an elevated $CO_2$ group (ambient temperature and 800ppm $CO_2$), an elevated temperature group (ambient temperature+$6^{\circ}C$ and 400ppm $CO_2$) and an elevated temperature/$CO_2$ group (ambient temperature+$6^{\circ}C$ and 800ppm $CO_2$). Compared with the control, plant height, branch number and leaf number increased under the elevated temperature and elevated temperature/$CO_2$ group. However, leaf area and chlorophyll content showed a tendency of decreasing in the elevated temperature group and elevated temperature/$CO_2$ group. The number of flower and bud were decreased in the elevated temperature and elevated temperature/$CO_2$ group (mean temperature at $26.8^{\circ}C$) during the growth period. The total number and the weight of fruits were decreased in the elevated temperature group and elevated temperature/$CO_2$ group more than the control group. While the weight, length and diameter of fruit decreased more than those of control as the temperature and $CO_2$ concentration increased gradually. This result suggests that the fruit yield could be decreased under the elevated temperature/$CO_2$ ($6^{\circ}C$ higher than atmospheric temperature/2-fold higher than atmospheric $CO_2$ concentration), whereas the percentage of ripen fruits after 100 days of planting was increased, and showed earlier harvest time than the control.

Growth and Photosynthetic Responses of Cuttings of a Hybrid Larch (Larix gmelinii var. japonica x L. kaempferi) to Elevated Ozone and/or Carbon Dioxide

  • Koike, Takayoshi;Mao, Qiaozhi;Inada, Naoki;Kawaguchi, Korin;Hoshika, Yasutomo;Kita, Kazuhito;Watanabe, Makoto
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.2
    • /
    • pp.104-110
    • /
    • 2012
  • We studied the effects of elevated ozone ([$O_3$]) and $CO_2$ concentrations ([$CO_2$]) on the growth and photosynthesis of the hybrid larch $F_1(F_1)$ and on its parents (the Dahurian larch and Japanese larch). $F_1$ is a promising species for timber production in northeast Asia. Seedlings of the three species were grown in 16 open top chambers and were exposed to two levels of $O_3$ (<10 ppb and 60 ppb for 7 h per day) in combination with two levels of $CO_2$ (ambient and 600 ppm for daytime) over an entire growing season. Ozone reduced the growth as measured by height and diameter, and reduced the needle dry mass and net photosynthetic rate of $F_1$, but had almost no effect on the Dahurian larch or Japanese larch. There was a significant increase in whole-plant dry mass induced by elevated [$CO_2$] in $F_1$ but not in the other two species. Photosynthetic acclimation to elevated [$CO_2$] was observed in all species. The net photosynthetic rate measured at the growing [$CO_2$] (i.e. 380 ppm for ambient treatment and 600 ppm for elevated $CO_2$ treatment) was nevertheless greater in the seedlings of all species grown at elevated [$CO_2$]. The high [$CO_2$] partly compensated for the reduction of stem diameter growth of $F_1$ at high [$O_3$]; no similar trend was found in the other growth and photosynthetic parameters, or in the other species.

Growth, Photosynthesis and Chlorophyll Fluorescence of Chinese Cabbage in Response to High Temperature (고온 스트레스에 대한 배추의 생장과 광합성 및 엽록소형광 반응)

  • Oh, Soonja;Moon, Kyung Hwan;Son, In-Chang;Song, Eun Young;Moon, Young Eel;Koh, Seok Chan
    • Horticultural Science & Technology
    • /
    • v.32 no.3
    • /
    • pp.318-329
    • /
    • 2014
  • In order to gain insight into the physiological responses of plants to high temperature stress, the effects of temperature on Chinese cabbage (Brassica campestris subsp. napus var. pekinensis cv. Detong) were investigated through analyses of photosynthesis and chlorophyll fluorescence under 3 different temperatures in the temperature gradient tunnel. Growth (leaf length and number of leaves) during the rosette stage was greater at ambient $+4^{\circ}C$ and ambient $+7^{\circ}C$ temperatures than at ambient temperature. Photosynthetic $CO_2$ fixation rates of Chinese cabbage grown under the different temperatures did not differ significantly. However, dark respiration rate was significantly higher in the cabbage that developed under ambient temperature relative to elevated temperature. Furthermore, elevated growth temperature increased transpiration rate and stomatal conductance resulting in an overall decrease of water use efficiency. The chlorophyll a fluorescence transient was also considerably affected by high temperature stress; the fluorescence yield $F_J$, $F_I$, and $F_P$ decreased considerably at ambient $+4^{\circ}C$ and ambient $+7^{\circ}C$ temperatures, with induction of $F_K$ and decrease of $F_V/F_O$. The values of RC/CS, ABS/CS, TRo/CS, and ETo/CS decreased considerably, while DIo/CS increased with increased growth temperature. The symptoms of soft-rot disease were observed in the inner part of the cabbage heads after 7, 9, and/or 10 weeks of cultivation at ambient $+4^{\circ}C$ and ambient $+7^{\circ}C$ temperatures, but not in the cabbage heads growing at ambient temperature. These results show that Chinese cabbage could be negatively affected by high temperature under a future climate change scenario. Therefore, to maintain the high productivity and quality of Chinese cabbage, it may be necessary to develop new high temperature tolerant cultivars or to markedly improve cropping systems. In addition, it would be possible to use the non-invasive fluorescence parameters $F_O$, $F_V/F_M$, and $F_V/F_O$, as well as $F_K$, $M_O$, $S_M$, RC/CS, ETo/CS, $PI_{abs}$, and $SFI_{abs}$ (which were selected in this study), to quantitatively determine the physiological status of plants in response to high temperature stresses.

Effects of the Elevated Temperature and Carbon Dioxide on Vine Growth and Fruit Quality of 'Campbell Early' Grapevines (Vitis labruscana) (온도와 이산화탄소의 상승처리가 포도 '캠벨얼리'의 수체생육과 과실품질에 미치는 영향)

  • Son, In Chang;Han, Jeom-Haw;Cho, Jung Gun;Kim, Seung Heui;Chang, Eun-Ha;Oh, Sung Il;Moon, Kyung-Hwan;Choi, In-Myung
    • Horticultural Science & Technology
    • /
    • v.32 no.6
    • /
    • pp.781-787
    • /
    • 2014
  • The effects of elevated temperature and $CO_2$ concentration on vine growth and characteristics of fruits of three-year-old 'Campbell Early' grapevine were investigated. The treatment groups consisted of a control group (ambient temperature and $390{\mu}L{\cdot}L^{-1}\;CO_2$), an elevated temperature group (ambient temperature + $4.0^{\circ}C$ and $390{\mu}L{\cdot}L^{-1}\;CO_2$), an elevated $CO_2$ group (ambient temperature and $700{\mu}L{\cdot}L^{-1}\;CO_2$), and an elevated $CO_2$/temperature group (ambient temperature + $4.0^{\circ}C$ and $700{\mu}L{\cdot}L^{-1}\;CO_2$). The average shoot length was 312.6 cm in the elevated $CO_2$/temperature group, which was higher than the other groups; with 206.2 cm in the control group and 255.6 cm and 224.8 cm in the elevated temperature group and elevated $CO_2$ group respectively. However, the shoot diameter showed a tendency of decreasing in the elevated temperature and elevated $CO_2$/temperature groups. The equatorial diameter of berries was increased in the higher carbon dioxide concentration, and the soluble solid content was the highest in the elevated $CO_2$ group, with $14.6^{\circ}Brix$ among all treatment groups and the lowest in the elevated temperature group ($13.9^{\circ}Brix$). The harvest date was approximately 11 d earlier in the elevated $CO_2$/temperature group and 4 to 2 days earlier in the elevated $CO_2$ group and elevated temperature group, respectively. Regarding the rate of photosynthesis and transpiration during the growth period, higher photosynthetic rates were observed in the elevated $CO_2$ group and the elevated $CO_2$/temperature group during the early stage of growth; however the photosynthetic rate was reduced dramatically in summer, which was contrary to transpiration.

Responses of Native Trees Species in Korea under Elevated Carbon Dioxide Condition - Open Top Chamber Experiment (상부 개방형 온실을 이용한 대기 중 이산화탄소 농도 증가가 우리나라 자생 수종에 미치는 형태적, 생리적 영향)

  • Ryu, Daun;Bae, Jinho;Park, Juhan;Cho, Sungsik;Moon, Minkyu;Oh, Chang-Young;Kim, Hyun Seok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.3
    • /
    • pp.199-212
    • /
    • 2014
  • The physiological responses of three common temperate species, Pinus densiflora, Fraxinus rhynchophylla, Sorbus alnifolia to elevated $CO_2$ was investigated using open top chambers with different $CO_2$ concentrations. Morphological (stomatal size, density and area) and physiological characteristics (maximum rates of photosynthesis, carboxylation and electron transport) were compared among trees grown under ambient, ambient ${\times}1.4$ (~550 ppm) and ambient ${\times}1.8$ (~700 ppm) $CO_2$ concentrations for last four years. Morphological responses were different among species. F. rhynchophyllar increased their stomatal size and S. alnifolia had higher stomatal density under elevated $CO_2$ than ambient. Stomatal area decreased in P. densiflora, whereas it increased in S. alnifolia. However, the maximum photosynthesis rate increased in all species up to 43.5% by S. alnifolia under elevated $CO_2$ and the enhancement increased with time. Even with four years of exposure to elevated $CO_2$, there was no sign of acclimation in the maximum carboxylation rate and the maximum electron transport rates in all species. Especially, S. alnifolia even showed the temporary increase of photosynthetic capacities in spring, when leaf nitrogen concentration was high with new leaf development. There was no significant differences in diameter growth rate in any species due to high variation in their tree sizes, however accumulated diameter and biomass for four years showed significantly increment in all species under elevated $CO_2$. For example, S. alnifolia showed 59% increase in diameter at the ambient ${\times}1.8$ (~700 ppm) compared to ambient.

Species-specific responses of temperate macroalgae with different photosynthetic strategies to ocean acidification: a mesocosm study

  • Kim, Ju-Hyoung;Kang, Eun Ju;Edwards, Matthew S.;Lee, Kitack;Jeong, Hae Jin;Kim, Kwang Young
    • ALGAE
    • /
    • v.31 no.3
    • /
    • pp.243-256
    • /
    • 2016
  • Concerns about how ocean acidification will impact marine organisms have steadily increased in recent years, but there is a lack of knowledge on the responses of macroalgae. Here, we adopt an outdoor continuous-flowing mesocosm system designed for ocean acidification experiment that allows high CO2 conditions to vary with natural fluctuations in the environment. Following the establishment of the mesocosm, five species of macroalgae that are common along the coast of Korea (namely Ulva pertusa, Codium fragile, Sargassum thunbergii, S. horneri, and Prionitis cornea) were exposed to three different CO2 concentrations: ambient (×1) and elevated CO2 (2× and 4× ambient), over two-week period, and their ecophysiological traits were measured. Results indicated that both photosynthesis and growth exhibited species-specific responses to the different CO2 concentrations. Most notably, photosynthesis and growth increased in S. thunbergii when exposed to elevated CO2 conditions but decreased in P. cornea. The preference for different inorganic carbon species (CO2 and HCO3), which were estimated by gross photosynthesis in the presence and absence of the external carbonic anhydrase (eCA) inhibitor acetazolamide, were also found to vary among species and CO2 treatments. Specifically, the two Sargassum species exhibited decreased eCA inhibition of photosynthesis with increased growth when exposed to high CO2 conditions. In contrast, growth of U. pertusa and C. fragile were not notably affected by increased CO2. Together, these results suggest that the five species of macroalgae may respond differently to changes in ocean acidity, with species-specific responses based on their differentiated photosynthetic acclimation. Understanding these physiological changes might allow us to better predict future changes in macroalgal communities in a more acidic ocean.

Infrared Light Absorbance: a New Method for Temperature Compensation in Nondispersive Infrared CO2 Gas Sensor

  • Yi, Seung Hwan
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.303-311
    • /
    • 2020
  • Nondispersive infrared CO2 gas sensor was developed after the simulation of optical cavity structure and assembling the optical components: IR source, concave reflectors, Fresnel lens, a hollow disk, and IR detectors. By placing a hollow disk in front of reference IR detector, the output voltages are almost constant value, near to 70.2 mV. The absorbance of IR light, Fa, shows the second order of polynomial according to ambient temperatures at 1,500 ppm. The differential output voltages and the absorbance of IR light give a higher accuracy in estimations of CO2 concentrations with less than ± 1.5 % errors. After implementing the parameters that are dependent upon the ambient temperatures in microcontroller unit (MCU), the measured CO2 concentrations show high accuracies (less than ± 1.0 %) from 281 K to 308 K and the time constant of developed sensor is about 58 sec at 301 K. Even though the estimation errors are relatively high at low concentration, the developed sensor is competitive to the commercial product with a high accuracy and the stability.

Ambient adsorption of $CO_2$ using an inorganic sorbent (무기흡착제를 이용한 $CO_2$의 상온흡착)

  • Jo, Young-Min;Lee, Ju-Yeol;Park, Young-Koo;Park, Joon-Seok;Kim, Seung-Ho;Ko, Jae-Churl
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.92-97
    • /
    • 2007
  • The present paper deals with gaseous carbon dioxide separation by a commercial adsorbent: X-type zeolite. Experimental work was carried out at an ambient condition focusing on how well meeting to the national guideline. A few types of reactor and material were examined, and practical capability was found in a granular bed type reactor with the flow of 2.5 CMM. An optimum design of reactor and adsorbent could provide the required concentration, less than 2500 ppm, for the continuous operation up to 10 hours. More work including automatic regeneration is now underworking.

Effects on Net Photosynthesis in Field-Grown Hot Peppers Responding to the Increased CO2 and Temperature

  • Yun, Sung-Chul;Ahn, Mun-Il
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.2
    • /
    • pp.106-112
    • /
    • 2009
  • The increased $CO_2$ and temperature (700 ${\mu}$mol.$mol^{-1}$ $CO_2$ and $30^{\circ}C$) was compared with ambient growth conditions (400 ${\mu}$mol.$mol^{-1}$ $CO_2$ and $25^{\circ}C$) in hot pepper. Gas exchange measurements, including net photosynthesis ($P_{net}$) and stomatal conductance ($g_s$), were taken according to treatment in fields of peppers grown in Suwon and Asan during 2008. The increased treatment $P_{net}$ by 35-45% throughout the season and was statistically significant in t-tests (p < 0.001); however, it did not significantly affect $g_s$. In addition, the gas exchange parameters in sun and shade leaves were measured. The difference between the sun and shade leaves was much greater than that between the elevated and ambient treatments, especially at harvest. Four commercial cultivars of hot pepper, Chunhasangsa, Ryukang, Manitta, and Olympic, were also compared by ANOVA. Chunhasangsa had the highest $P_{net}$, which decreased by 30% from the vegetative to the harvest stage. Based on a factorial design, the effect of the increased $CO_2$ and temperature was assessed based on the temperature, $CO_2$, and their interaction effects. Orthogonal contrasts showed that the effects of temperature on $P_{net}$ and $g_s$ were significant, whereas $CO_2$ and their interactions were not.

Seasonal impact to air qualities in industrial areas of the Arabian Gulf region

  • Al-Taani, Ahmed A.;Howari, Fares M.;Nazzal, Yousef;Yousef, Ahmad
    • Environmental Engineering Research
    • /
    • v.23 no.2
    • /
    • pp.143-149
    • /
    • 2018
  • Air quality conditions and pollution status have been evaluated in the industrial area between Sharjah and Ajman border in UAE. Daily concentrations of $O_3$, CO, $NO_2$, $SO_2$, $PM_{2.5}$, $PM_{10}$, Total Volatile Organic Compounds (TVOC) and Total Suspended Particulate (TSP) have been monitored from Sept. 2015 to April 2016. The monthly average concentrations of $O_3$, CO, $NO_2$, $SO_2$, TVOC were within the UAE ambient air quality standards during the survey period. However, $PM_{10}$ and TSP levels exceeded the recommended limits in Sept. 2015, Oct. 2015 and March 2016. Temporal variations in air quality parameters showed highest levels in March 2016 for $PM_{2.5}$, $PM_{10}$, $NO_2$, TVOC and TSP, whereas $O_3$, $SO_2$ and CO showed relatively low values in this month. $PM_{2.5}$ levels in ambient air were above the EPA guideline of $35{\mu}g/m^3$ in all months. $PM_{2.5}$ was the critical ambient air pollutant with Index for Pollutant ($I_p$) values varying from 103-209, indicating Air Quality Index categories of unhealthy for sensitive groups (62.5%) to unhealthy (25%) to very unhealthy (12.5%). The $I_p$ average values of $PM_{2.5}$ decreased from Sept. 2015 to reach lowest value in Dec. 2015 before increasing gradually, peaking in March 2016. These results suggest the potential health risks associated with $PM_{2.5}$ is low in winter, where the prevailing meteorological conditions of lower temperatures, higher humidity, higher wind speed reduced particulate matter. The results revealed the industrial area is impacted by anthropogenic and natural sources of particulate matter.