• 제목/요약/키워드: aluminum tolerance

검색결과 49건 처리시간 0.021초

소나무속 식물의 뿌리생장에 대한 알루미늄 내성 (Aluminum Tolerance in Pine Root Growth)

  • Ryu, Hoon;Joon-Ho Kim
    • The Korean Journal of Ecology
    • /
    • 제19권1호
    • /
    • pp.36-46
    • /
    • 1996
  • Variation of Al tolerance in Pinus densiflora, P. rigida and P. thunbergii was investigated in a solution culture. Root length decreased as Al concentration increased, and decreased more in dilute culture media than in dense one. Aluminum tolerance based on relative root length was in the order of P. rigida > P. densiflora > P. thunbergii. Al content in tissue increased as Al concentration of the media increased, but the reverse was true for content of Ca and Mg. Al tolerance for root length showed intraspecific variation, even under the same Al concentration in the media.

  • PDF

유리섬유/알루미늄 혼성 적층판의 인장특성과 파괴인성 평가 (Evaluation on Tensile Properties and Fracture Toughness of Glass Fiber/Aluminum Hybrid Laminates)

  • 우성충;최낙삼
    • 대한기계학회논문집A
    • /
    • 제29권6호
    • /
    • pp.876-888
    • /
    • 2005
  • Tensile properties and fracture toughness of monolithic aluminum, fiber reinforced plastics and glass fiber/aluminum hybrid laminates under tensile loads have been investigated using plain coupon and single-edge-notched specimens. Elastic modulus and ultimate tensile strength of GFMLs showed different characteristic behaviors according to the Al kind, fiber orientation and composition ratio. Fracture, toughness of A-GFML-UD which was determined by the evaluation of $K_{IC}$ and $G_{IC}$ based on critical load was similar to that of GFRP-UD and was much higher than monolithic Al. Therefore, A-GFML-UD presented superior fracture toughness as well as prominent damage tolerance in comparison to its constituent Al. By separating Al sheet from GFMLs after the test, optical microscope observation of fracture zone of GFRP layer in the vicinity of crack tip revealed that crack advance of GFMLs depended on the orientation of fiber layer as well as Al/fiber composition ratio.

Bacterial and Fungal Communities in Bulk Soil and Rhizospheres of Aluminum-Tolerant and Aluminum-Sensitive Maize (Zea mays L.) Lines Cultivated in Unlimed and Limed Cerrado Soil

  • Mota, Da;Faria, Fabio;Gomes, Eliane Aparecida;Marriel, Ivanildo Evodio;Paiva, Edilson;Seldin, Lucy
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권5호
    • /
    • pp.805-814
    • /
    • 2008
  • Liming of acidic soils can prevent aluminum toxicity and improve crop production. Some maize lines show aluminum (Al) tolerance, and exudation of organic acids by roots has been considered to represent an important mechanism involved in the tolerance. However, there is no information about the impact of liming on the structures of bacterial and fungal communities in Cerrado soil, nor if there are differences between the microbial communities from the rhizospheres of Al-tolerant and Al-sensitive maize lines. This study evaluated the effects of liming on the structure of bacterial and fungal communities in bulk soil and rhizospheres of Al-sensitive and Al-tolerant maize (Zea mays L.) lines cultivated in Cerrado soil by PCR-DGGE, 30 and 90 days after sowing. Bacterial fingerprints revealed that the bacterial communities from rhizospheres were more affected by aluminum stress in soil than by the maize line (Al-sensitive or Al-tolerant). Differences in bacterial communities were also observed over time (30 and 90 days after sowing), and these occurred mainly in the Actinobacteria. Conversely, fungal communities from the rhizosphere were weakly affected either by liming or by the rhizosphere, as observed from the DGGE profiles. Furthermore, only a few differences were observed in the DGGE profiles of the fungal populations during plant development when compared with bacterial communities. Cloning and sequencing of 16S rRNA gene fragments obtained from dominant DGGE bands detected in the bacterial profiles of the Cerrado bulk soil revealed that Actinomycetales and Rhizobiales were among the dominant ribotypes.

손상허용해석을 위한 균열성장모델 교정 (Calibration of crack growth model for damage tolerance analysis)

  • 주영식;김재훈
    • 한국군사과학기술학회지
    • /
    • 제5권4호
    • /
    • pp.67-77
    • /
    • 2002
  • This paper introduces the calibration results of the fatigue crack growth models for damage tolerance analysis of the aircraft structures. Generalized Willenborg model and Wheeler model are calibrated with experimental data tested under the load spectrum of a trainer. The retardation factors such as, shut-off ratio in Generalized Willenborg model and shaping exponent in Wheeler model, are evaluated for aluminum alloys AL2024-T3511, AL7050-T7451 and AL7075-T73511. It is shown that the retardation effect of the crack growth rate depends on the yield strength of material and the maximum stress in the load spectrum. Generalized Willenborg model and Wheeler model give satisfactory prediction of crack growth life but the calibration of the experimental parameters with test is required.

Proteomic Response of Alfalfa Subjected to Aluminum (Al) Stress at Low pH Soil

  • Rahman, Md. Atikur;Kim, Yong-Goo;Lee, Byung-Hyun
    • 한국초지조사료학회지
    • /
    • 제34권4호
    • /
    • pp.262-268
    • /
    • 2014
  • In order to reveal the aluminum (Al) stress tolerance mechanisms in alfalfa plant at low pH soil, a proteomic approach has been conducted. Alfalfa plants were exposed to Al stress for 5 days. The plant growth and total chlorophyll content are greatly affected by Al stress. The malondialdehyde (MDA) and $H_2O_2$ contents were increased in a low amount but free proline and soluble sugar contents, and the DPPH-radical scavenging activity were highly increased. These results indicate that antioxidant activity (DPPH activity) and osmoprotectants (proline and sugar) may involve in ROS ($H_2O_2$) homeostasis under Al stress. In proteomic analysis, over 500 protein spots were detected by 2-dimentional gel electrophoresis analysis. Total 17 Al stress-induced proteins were identified, of which 8 protein spots were up-regulated and 9 were down-regulated. The differential expression patterns of protein spots were selected and analyzed by the peptide mass fingerprinting (PMF) using MALDI-TOF MS analysis. Three protein spots corresponding to Rubisco were significantly down-regulated whereas peroxiredoxin and glutamine synthetase were up-regulated in response to Al stress. The different regulation patterns of identified proteins were involved in energy metabolism and antioxidant / ROS detoxification during Al stress in alfalfa. Taken together, these results provide new insight to understand the molecular mechanisms of alfalfa plant in terms of Al stress tolerance.

Genetic Distances Among Rice Mutant Genotypes Assessed by AFLP and Aluminum Tolerance-Related Traits

  • Malone, Emilia;Kopp, Mauricio Marini;Malone, Gaspar;Branco, Juliana Severo Castelo;Carvalho, Fernando Iraja Felix;Oliveira, Antonio Costa de
    • Journal of Crop Science and Biotechnology
    • /
    • 제10권2호
    • /
    • pp.106-111
    • /
    • 2007
  • Increasing genetic variability with mutagenic agents has been broadly employed in plant breeding because it has the potential to alter one or more desirable traits. In this study, a molecular analysis assessed by Amplified Fragment Length Polymorphisms(AFLPs) and a morphological analysis based on seedlings subjected to aluminum stress were compared. Also, an analysis of allelic frequencies was performed to observe unique alleles present in the pool. Genetic distances ranging from 0.448 to 0.953 were observed, suggesting that mutation inducing was effective in generating variability. The genetic distances based on morphological data ranged from 0(genotypes 22 and 23) to 30.38(genotypes 15 and 29). In the analysis of allelic frequency, 13 genotypes presented unique alleles, suggesting that mutation inducing was also targeting unique sites. Mutants with good performance under aluminum stress(9, 15, 18 and 27) did not form the same clusters when morphological and molecular analyses were compared, suggesting that different genomic regions may be responsible for their better performance.

  • PDF

핫블로우 포밍을 이용한 고강도 알루미늄 루프 사이드 레일 설계 (Design of Roof Side Rail by Hot Blow Forming using High Strength Aluminum)

  • 김민기;이정흠;고대철
    • 소성∙가공
    • /
    • 제32권6호
    • /
    • pp.311-320
    • /
    • 2023
  • Recently, lightweight of automotive parts has been required to solve environmental problems caused by global warming. Accordingly, research and development are proceeded on manufacturing of parts using aluminum that can replace steel for lightweight of the automotive parts. In addition, high strength aluminum can be applied to body parts in order to meet both requirements of lightening and improving crash safety of vehicle. In this study, hot blow forming of roof side rail is employed to manufacturing of the automotive parts with high strength aluminum tube. In hot blow forming, longer forming times and excessive thinning can be occurred as compared with conventional manufacturing processes. So optimization of process conditions is required to prevent excessive thinning and to uniformize thickness distribution with fast forming time. Mechanical properties of high strength aluminum are obtained from tensile test at high temperature. These properties are used for finite element(FE) analysis to investigate the effect of strain rate on thinning and thickness distribution. Variation of thickness was firstly investigated from the result of FE analysis according to tube diameter, where the shapes at cross section of roof side rail are compared with allowable dimensional tolerance. Effective tube diameter is determined when fracture and wrinkle are not occurred during hot blow forming. Also FE analysis with various pressure-time profiles is performed to investigate the their effects on thinning and thickness distribution which is quantitatively verified with thinning factor. As a results, optimal process conditions can be determined for the manufacturing of roof side rail using high strength aluminum.

DEVELOPMENT OF LIGHTWEIGHT OPTICAL TELESCOPE KIT USING ALUMINUM PROFILE AND ISOGRID STRUCTURE

  • Park, Woojin;Lee, Sunwoo;Han, Jimin;Ahn, Hojae;Ji, Tae-Geun;Kim, Changgon;Kim, Dohoon;Lee, Sumin;Kim, Young-Jae;Kim, Geon-Hee;Kim, Junghyun;Kim, Ilhoon;Pak, Soojong
    • 천문학회지
    • /
    • 제55권1호
    • /
    • pp.11-22
    • /
    • 2022
  • We introduce the Transformable Reflective Telescope (TRT) kit that applies an aluminum profile as a base plate for precise, stable, and lightweight optical system. It has been utilized for optical surface measurements, developing alignment and baffle systems, observing celestial objects, and various educational purposes through Research & Education projects. We upgraded the TRT kit using the aluminum profile and truss and isogrid structures for a high-end optical test device that can be used for prototyping of precision telescopes or satellite optical systems. Thanks to the substantial aluminum profile and lightweight design, mechanical deformation by self-weight is reduced to maximum 67.5 ㎛, which is an acceptable misalignment error compared to its tolerance limits. From the analysis results of non-linear vibration simulations, we have verified that the kit survives in harsh vibration environments. The primary mirror and secondary mirror modules are precisely aligned within 50 ㎛ positioning error using the high accuracy surface finished aluminum profile and optomechanical parts. The cross laser module helps to align the secondary mirror to fine-tune the optical system. The TRT kit with the precision aluminum mirror guarantees high quality optical performance of 5.53 ㎛ Full Width at Half Maximum (FWHM) at the field center.

Mirrors and Optomechanical Structures Design and Analysis for Linear Astigma-tism Free Three Mirror System (LAF-TMS)

  • Park, Woojin;Hammar, Arvid;Lee, Sunwoo;Chang, Seunghyuk;Kim, Sanghyuk;Jeong, Byeongjoon;Kim, Geon Hee;Kim, Daewook;Pak, Soojong
    • 천문학회보
    • /
    • 제43권2호
    • /
    • pp.55.4-56
    • /
    • 2018
  • Linear Astigmatism Free - Three Mirror System (LAF-TMS) is the linear astigmatism free off-axis wide field telescope with D = 150 mm, F/3.3, and $FOV=5.51^{\circ}{\times}4.13^{\circ}$. We report the design and analysis results of its mirrors and optomechanical structures. Tolerance allowance has been analyzed to the minimum mechanical tolerance of ${\pm}0.05mm$ that is reasonable tolerance for fabrication and optical alignment. The aluminum mirrors are designed with mounting flexure features for the strain-free mounting. From Finite Element Analysis (FEA) results of mounting torque and self-weight, we expect 33 - 80 nm RMS mirror surface deformations. Shims and the L-bracket are mounted between mirrors and the mirror mount for optical alignment. The mirror mount is designed with four light-weighted mechanical parts. It can stably and accurately fix mirrors, and it also suppresses some of stray light.

  • PDF

복합재 패춰의 열잔류응력 해석 (Analysis of Thermal Residual Stress in Composite Patches)

  • 김위대;김난호
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.63-66
    • /
    • 2000
  • This research addresses study on thermal residual stress of a composite patch repair of the edge cracked aluminium panel of aging aircraft. Composite patch repair is an efficient and economical technique to improve the damage tolerance of cracked metallic structures. These are thermal residual stresses due to the mismatch of coefficient of thermal expansion, and these are affected by the curing cycle of patch specimen. In this study, three curing cycles were selected for F.E. analysis. This study features the effect on composite patch and aluminum by thermal residual stress during crack propagation in aluminum plate.

  • PDF