• 제목/요약/키워드: aluminum nitride(AlN)

검색결과 142건 처리시간 0.032초

Effects of Magnesium Catalyst on the Nitridation of Aluminum Melt in the Synthesis of Aluminum Nitride Powder

  • Kim, Hyo-Jin;Kim, Sung-Hun;Lim, Sung-Min;Seo, Jong-Hyun;Lee, Kon-Bae;Lee, Jae-Chul;Ahn, Jae-Pyoung
    • Applied Microscopy
    • /
    • 제44권2호
    • /
    • pp.79-82
    • /
    • 2014
  • Aluminum nitride (AlN) powder was easily synthesized by the direct nitridation of Al melt containing ~20 wt.% Mg catalyst and the nitriding behavior was investigated by thermodynamic calculation and through observations of electron microscopy and X-ray diffraction. The addition of Mg catalyst decreased the nitriding temperature below $1,000^{\circ}C$, which is comparable to the high nitriding temperature of $1,400^{\circ}C$ required in carbothermal method. It was caused by a significant increase of the solubility of nitrogen gas due to the increase of Mg catalyst in Al melt. The dissolved nitrogen gas met Mg catalyst and was transformed into metastable $Mg_3N_2$. Finally the metastable phase reacted with Al to AlN.

메조포러스 알루미나를 이용한 AlN 분말 제조 및 특성분석 (Preparation of AlN Powder Using Mesoporous Alumina and Its Characterization)

  • 김은비;이윤주;신동근;권우택;김수룡;강미숙;김영희
    • 한국세라믹학회지
    • /
    • 제51권6호
    • /
    • pp.544-548
    • /
    • 2014
  • Aluminum nitride was synthesized using a carbothermal method from mesoporous alumina having a high surface area (> $1,000m^2/g$) as an aluminum source and CNTs (carbon nano tubes) as a carbon source. In this case the mesoporous alumina was used as the starting material instead of ${\alpha}-Al_2O_3$ with the expectation that the mesopores in mesoporous alumina act as channels for N2 gas and elimination of CO generated as by-product. It is also expected that the synthetic temperature should be lower compared to the use of ${\alpha}-Al_2O_3$ as a starting material due to its high surface area. The crystallinity of the produced aluminum nitride was studied by XRD and FT-IR, and the microstructure was investigated by FE-SEM. Also the purity of the aluminum nitride was analyzed through N/O determinator and ICP analysis.

플라즈마 아크 용해 공정으로 자발합성된 질화알루미늄 강화 알루미늄기지 복합재료의 개발 (Fabrication of Aluminum Nitride Reinforced Aluminum Matrix Composites via Plasma Arc Melting under Nitrogen Atmosphere)

  • 정수진;이제인;박은수
    • Composites Research
    • /
    • 제36권2호
    • /
    • pp.101-107
    • /
    • 2023
  • 본 연구에서는 질화알루미늄을 강화재로 갖는 알루미늄기지 복합재료를 질소 분위기에서의 아크용해 공정을 통해 제조하였다. 알루미늄과 질소 원자의 화학반응을 1분간 유지시켰을 때, 중간층과 라멜라층으로 구분되는 질화알루미늄 강화상이 자발적으로 알루미늄 용탕 내부에 형성되어 기지 전반에 분포되었다. 복합재료는 약 10 vol.%의 AlN을 가지며, 이 강화재는 계면에서 낮은 열저항과 강한 결합을 보였다. 제조된 복합재료는 열전도도가 높고 열팽창계수는 낮은 열적 특성 조합을 보였다. 또한, 본 연구의 복합재료는 이종원소인 실리콘을 기지에 첨가함으로써 열팽창계수를 추가적으로 감소시키는 것이 가능했다. 이는 아크 용해법으로 제조된 알루미늄기지 복합재료가 낮은 열팽창계수를 요구하는 방열소재로 적용될 수 있는 가능성을 시사한다.

기판 온도 변화에 따른 AlN 박막 성장에 잔류 산소가 미치는 영향 (Influence of Residual Oxygen on the growth of AlN Thin Films with Substrate Temperature)

  • 김병균;이을택;김응권;정석원;노용한
    • 한국전기전자재료학회논문지
    • /
    • 제21권5호
    • /
    • pp.463-467
    • /
    • 2008
  • Aluminum nitride (AlN) thin films have been deposited on Au electrodes by using reactive RF magnetron sputtering method in a gas mixture of Ar and $N_2$ at different substrate temperature. It was found that substrate temperature was varied in the range up to $400^{\circ}C$, highly c-axis oriented film can be obtained at $300^{\circ}C$ with full width at half maximum (FWHM) $3.1^{\circ}$. Increase in surface roughness from 3.8 nm to 5.9 nm found to be associated with increase in grain size, with substrate temperature; however, the AlN film fabricated at $400^{\circ}C$ exhibited a granular type of structure with non-uniform grains. The Al 2p and N 1s peak in the X-ray photoelectron spectroscopy (XPS) spectrum confirmed the formation of Al-N bonds. The XPS spectrum also indicated the presence of oxynitrides and oxides, resulting from the presence of residual oxygen in the vacuum chamber. It is concluded that the AlN film deposited at substrate temperature of $300^{\circ}C$ exhibited the most desirable properties for the application of high-frequency surface acoustic devices.

원자층 증착법을 이용한 AlN 박막의 성장 및 응용 동향 (Growth of Aluminum Nitride Thin Films by Atomic Layer Deposition and Their Applications: A Review)

  • 윤희주;김호경;최병준
    • 한국재료학회지
    • /
    • 제29권9호
    • /
    • pp.567-577
    • /
    • 2019
  • Aluminum nitride (AlN) has versatile and intriguing properties, such as wide direct bandgap, high thermal conductivity, good thermal and chemical stability, and various functionalities. Due to these properties, AlN thin films have been applied in various fields. However, AlN thin films are usually deposited by high temperature processes like chemical vapor deposition. To further enlarge the application of AlN films, atomic layer deposition (ALD) has been studied as a method of AlN thin film deposition at low temperature. In this mini review paper, we summarize the results of recent studies on AlN film grown by thermal and plasma enhanced ALD in terms of processing temperature, precursor type, reactant gas, and plasma source. Thermal ALD can grow AlN thin films at a wafer temperature of $150{\sim}550^{\circ}C$ with alkyl/amine or chloride precursors. Due to the low reactivity with $NH_3$ reactant gas, relatively high growth temperature and narrow window are reported. On the other hand, PEALD has an advantage of low temperature process, while crystallinity and defect level in the film are dependent on the plasma source. Lastly, we also introduce examples of application of ALD-grown AlN films in electronics.

Surface Analysis of Plasma Pretreated Sapphire Substrate for Aluminum Nitride Buffer Layer

  • Jeong, Woo Seop;Kim, Dae-Sik;Cho, Seung Hee;Kim, Chul;Jhin, Junggeun;Byun, Dongjin
    • 한국재료학회지
    • /
    • 제27권12호
    • /
    • pp.699-704
    • /
    • 2017
  • Recently, the use of an aluminum nitride(AlN) buffer layer has been actively studied for fabricating a high quality gallium nitride(GaN) template for high efficiency Light Emitting Diode(LED) production. We confirmed that AlN deposition after $N_2$ plasma treatment of the substrate has a positive influence on GaN epitaxial growth. In this study, $N_2$ plasma treatment was performed on a commercial patterned sapphire substrate by RF magnetron sputtering equipment. GaN was grown by metal organic chemical vapor deposition(MOCVD). The surface treated with $N_2$ plasma was analyzed by x-ray photoelectron spectroscopy(XPS) to determine the binding energy. The XPS results indicated the surface was changed from $Al_2O_3$ to AlN and AlON, and we confirmed that the thickness of the pretreated layer was about 1 nm using high resolution transmission electron microscopy(HR-TEM). The AlN buffer layer deposited on the grown pretreated layer had lower crystallinity than the as-treated PSS. Therefore, the surface $N_2$ plasma treatment on PSS resulted in a reduction in the crystallinity of the AlN buffer layer, which can improve the epitaxial growth quality of the GaN template.

반응성 RF 마그네트론 스퍼터링으로 증착한 AlN 박막의 특성에 질소농도 변화가 미치는 영향 (Effect of nitrogen concentration on the microstructures of AlN thin films fabricated by reactive RF sputtering)

  • 임동기;김병균;정석원;노용한
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.367-367
    • /
    • 2008
  • Aluminum nitride (AlN) thin films have been deposited on Si substrate by using reactive RF magnetron sputtering method in a gas mixture of Ar and $N_2$ at different $N_2$ concentration. It was found that $N_2$ concentration was varied in the range up to 20-100%, highly c-axis oriented film can be obtained at 50% $N_2$ with full width at half maximum (FWHM) $4.5^{\circ}$. Decrease in surface roughness from 7.5 nm to 4.6 nm found to be associated with decrease in grain size, with $N_2$ concentration; however, the AlN film fabricated at 20% $N_2$ exhibited a granular type of structure with non-uniform grains. The absorption peak was observed around 675 $cm^{-1}$ in fourier transform infrared spectroscopy (FTIR). It is concluded that the AlN film deposited at $N_2$ concentration of 50% exhibited the most desirable properties for the application of high-frequency surface acoustic devices.

  • PDF

Effect of Additive Composition on Mechanical Properties of Silicon Carbide Sintered with Aluminum Nitride and Erbium Oxide

  • Lee, Sung-Hee;Kim, Young-Wook
    • 한국세라믹학회지
    • /
    • 제42권1호
    • /
    • pp.16-21
    • /
    • 2005
  • The effect of additive composition, using AlN and $Er_{2}O_{3}$ as sintering additives, on the mechanical properties of liquid-phase-sintered, and subsequently annealed SiC ceramics was investigated. The microstructures developed were quantitatively analyzed by image analysis. The average thickness of SiC grains increased with increasing the $Er_{2}O_{3}/(AlN + Er_{2}O_{3})$ ratio in the additives whereas the aspect ratio decreased with increasing the ratio. The mechanical properties versus $Er_{2}O_{3}/(AlN + Er_{2}O_{3})$ ratio curve had a maximum; i.e., there was a small composition range at which optimum mechanical properties were realized. The best results were obtained when the ratio ranged from 0.4 to 0.6. The flexural strength and fracture toughness of the SiC ceramics were $550\~650\;MPa$ and $5.5\~6.5$ MPa${\cdot}m^{1/2}$, respectively.

질화알루미늄 나노분말의 부착과 이를 활용한 초소수성 표면 제작 (Deposition of aluminum nitride nanopowders and fabrication of superhydrophobic surfaces )

  • 이광석;최헌주;조한동
    • 한국표면공학회지
    • /
    • 제57권1호
    • /
    • pp.49-56
    • /
    • 2024
  • Superhydrophobic surfaces have been expected to be able to provide considerable performance improvements and introduce innovative functions across diverse industries. However, representative methods for fabricating superhydrophobic surfaces include etching the substrate or attaching nanosized particles, but they have been limited by problems such as applicability to only a few materials or low adhesion between particles and substrates, resulting in a short lifetime of superhydrophobic properties. In this work, we report a novel coating technique that can achieve superhydrophobicity by electrophoretic deposition of aluminum nitride (AlN) nanopowders and their self-bonding to form a surface structure without the use of binder resins through a hydrolysis reaction. Furthermore, by using a water-soluble adhesive as a temporary shield for the electrophoretic deposited AlN powders, hierarchical aluminum hydroxide structures can be strongly adhered to a variety of electrically conductive substrates. This binder-free technique for creating hierarchical structures that exhibit strong adhesion to a variety of substrates significantly expands the practical applicability of superhydrophobic surfaces.