• Title/Summary/Keyword: aluminum ignition

Search Result 29, Processing Time 0.02 seconds

Pulsed DB/AB T-Burner Test for Measurement of Combustion Response Function of Solid Propellants

  • Lim, Jih-Wan;Yoon, Woong-Sup;Yoo, Ji-Chang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.431-436
    • /
    • 2008
  • T-burner tests of an Al/HTPB propellant in conjunction with a Pulsed DB/AB Method were conducted to find an acoustic amplification factor. Aluminum-free and aluminum-heavy propellants were examined. Instant surface ignition was successfully made by the use of a supplementary propellant of fractionally higher reaction rate. With the presence of higher aluminum concentration in the propellants, the pressure perturbations were promptly damped down and the pressure fluctuations were no longer dispersive. Addition of aluminum particles into the propellant was advantageous for stabilizing pressure-coupled unstable waves.

  • PDF

Temperature Field and Emission Spectrum Measurement of High Energy Density Steam Plasma Jet for Aluminum Powder Ignition (알루미늄 분말 점화용 고밀도 스팀 플라즈마 제트 온도장 및 방출 스펙트럼 측정)

  • Lee, Sanghyup;Lim, Jihwan;Lee, Dohyung;Yoon, Woongsup
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.1
    • /
    • pp.26-32
    • /
    • 2014
  • In this study, DC (Direct current) type steam plasma igniter is developed for effective ignition of high-energy density metal aluminum and gas temperature is measured by emission spectrum of OH radical. Because of the ultra-high gas temperature, the DC plasma jet is measured by Boltzmann plot method which is the non-contact optical technique and spectrum comparison-analysis. And both methods were applied to experiment after accurate verification. As a result, we could identify that plasma jet temperature is 2900 K ~ 5800 K in the 30 mm range from the nozzle tip.

Parametric Studies on the Sensitivity of Single Isolated Aluminum Particle Combustion Modeling (알루미늄 입자 연소 지배인자의 민감도 해석)

  • Lee, Sang-Hyup;Ko, Tae-Ho;Yang, Hee-Sung;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.321-327
    • /
    • 2010
  • A simplified analytical modeling for micro-sized single metal particle combustion in air was conducted in the present study. The metal particle combustion consists of two distinct reaction regimes, ignition and quasi-steady burning, and the thermo-fluidic phenomena in each stage are formulated by virtue of the conservation and transport equations. Reliability of the model is shown by rigorous validation of the method with emphasis laid on the characterizing the commanding parameters. Effects of Initial particle size, initial oxide film thickness, convection, ambient pressure and temperature are examined and addressed with validation.

  • PDF

Fabrication of Activated Alumina Using Aluminum Hydroxide by a Hydrothermal Process (수산화알루미늄으로부터 수열법을 이용한 활성 알루미나 제조에 관한 연구)

  • Bae, Hyeon Cheol;Lee, Sang-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.384-389
    • /
    • 2013
  • Activated alumina was fabricated with aluminum hydroxide in this study. High-purity alumina gel and boehmite were prepared from aluminum hydroxide by a hydrothermal process and fired to activate alumina having a surface area of 380 ~ 480 $m^2/g$ with less loss of ignition. The aging and drying condition during the fabrication process affected the loss of ignition, the sedimentation time of the alumina suspension, as well as the surface area of the activated alumina. For pellet-type activated alumina, the pre-fired alumina gel and boehmite were press-formed and fired at $400^{\circ}C$ and $550^{\circ}C$ for 6 h, respectively. The fired pellets showed a low density of 2.0 ~ 2.2 $g/cm^3$ with 20% firing shrinkage and sufficient handling strength. In this study, a new fabrication process for high-quality activated alumina with aluminum hydroxide is introduced. The effects of the processing parameters on the activated alumina properties are also examined.

Measurement of Pressure-coupled Combustion Instability Characteristics : Acoustic Attenuation by Particulate Matter(Al) and Combustion Response of Solid Propellant (고체로켓 연소관 내 압력섭동에 대한 입자상 물질에 의한 음향 감쇠 및 연소응답 특성 측정)

  • Lim, Jihwan;Lee, Sanghyup;Yoon, Woongsup
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.2
    • /
    • pp.16-26
    • /
    • 2014
  • T-Burner tests of an Al/HTPB propellant in conjunction with a Pulsed DB/AB Method were conducted to find an acoustic amplification factor. Aluminum-free and aluminum-heavy propellants were examined. Instant surface ignition was successfully made by the use of a supplementary propellant of fractionally higher reaction rate. With the presence of higher aluminum concentration in the propellants, the pressure perturbations were promptly damped down and the pressure fluctuations were no longer dispersive. Addition of aluminum particles into the propellant was advantageous for stabilizing pressure-coupled unstable waves.

Development of aluminum powder feeding system (알루미늄입자의 유체화, 이송 및 점화에 대한 연구(I))

  • Lee, Sunkey;Kweon, Suhyeon;Lee, Byeong-Jun;Song, Dong Joo;Lee, Ji Hyung
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.241-243
    • /
    • 2012
  • Experiments were conducted to get the design concepts for the continuous aluminum particle feeding system. Two opposed cylinders were used. Aluminum particles in one cylinder were ejected to the air by the supplying gas and the pressure of the other cylinder. It was not possible to eject more aluminum mass flowrate than that of gas if particles were just thrust by the pressure difference between two cylinders. Aluminum particle/air mixture in the flow system was successfully ignited by the electric spark.

  • PDF

Fabrication of AlN Whiskes by Self-propagating High-temperature Synthesis (자전 고온 합성법에 의한 질화 알루미늄 휘스커의 제조)

  • 이경재;장영섭;김석윤;김용석
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.8
    • /
    • pp.931-937
    • /
    • 1995
  • AlN powder and whiskers were synthesized by direct nitridation of aluminum powder in pure nitrogen atmosphere. The nitridation reaction of aluminum powder was initiated by heating the sample to the ignition temperature and the reaction was finished in less than 3 minutes. AlN whisker-shaped morphology was observed predominantly when the sample was heated above 90$0^{\circ}C$.

  • PDF

Fabrication and Thermophysical Properties of Nickel-coated Aluminum Powder by Electroless Plating (비전해 방법을 이용한 니켈 코팅 알루미늄 분말 제조 및 열물성 평가)

  • Lee, Sanghyup;Lim, Jihwan;Noh, Kwanyoung;Yoon, Woongsup
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.4
    • /
    • pp.9-17
    • /
    • 2014
  • In this study, in order to improve the ignitability of high energy aluminum powder, natural oxide films (alumina) were chemically removed, and instead nickel coat was applied. We used an electroless plating for nickel coating and confirmed quantitatively and qualitatively a time-dependent degree of nickel coating through analysis of surface by SEM/EDS. We also conducted element analysis by XRD and thermal properties by TGA/DSC in air oxidizer environment. There results explained the ignition enhancement mechanism of the nickel-coated aluminum powder in air. The difference between coated and un-coated aluminum powder, the effectiveness of coated powder has better ignitability.

Reaction Characteristics Study of Aluminum-Copper(II) Oxide Composites Initiated by the Electrostatic Discharge (Aluminum-Copper(II) Oxide Composite의 정전기에 의한 반응 특성 연구)

  • Kim, Minjun;Kim, Sung Ho;Kim, Jayoung;Im, Yeseul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.591-598
    • /
    • 2018
  • The reaction characteristics of aluminum-copper(II) oxide composites initiated by the electrostatic discharge were studied as changing the aluminum particle size. Three different sizes of aluminum particles with nano-size copper(II)-oxide particle were used in the study. These composites were manufactured by two methods i.e. a shock-gel method and a self-assembly method. The larger aluminum particle size was, the less sensitive and less violent these composites were based on the electrostatic test. On the analysis of high speed camera about ignition appearances and burning time, the burning speed was faster when aluminum particle size was smaller.

Parametric Studies on the Sensitivity of Single Isolated Aluminum Particle Combustion Modeling (단일 마그네슘 입자 연소 지배인자의 민감도 해석)

  • Lee, Sang-Hyup;Ko, Tae-Ho;Yoon, Woong-Sup;Yang, Hee-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.341-350
    • /
    • 2011
  • A simplified analytical study for micro-sized single metal particle combustion in air was conducted in the present study. The metal particle combustion consists of two distinct reaction regimes, ignition and quasi-steady burning, and the thermo-fluidic phenomena in each stage are formulated by virtue of the conservation and transport equations. When particle temperature reaches to 1200 K, ended an ignition stage and was converted at quasi-steady combustion stage. Effects of Initial particle size, convection, ambient pressure and temperature are examined and addressed with validation.

  • PDF