• Title/Summary/Keyword: aluminum foam sandwich

Search Result 19, Processing Time 0.021 seconds

Numerical investigation on dynamic characteristics of sandwich plates under periodic and thermal loads

  • Mouayed H.Z., Al-Toki;Wael Najm, Abdullah;RidhaA., Ahmed;Nadhim M., Faleh;Raad M., Fenjan
    • Steel and Composite Structures
    • /
    • v.45 no.6
    • /
    • pp.831-837
    • /
    • 2022
  • Numerical investigation on dynamic characteristics of sandwich plates under periodic and thermal loads has been presented by assuming that the plate has three layers which are a foam core and two skins. The foam core made of Aluminum has porosities with uniform and graded dispersions. The sandwich plate has been supposed to be affected by periodical compressive loads. Also, temperature variation causes uniform thermal load. The formulation has been established based upon a higher-order plate theory and Ritz method has been used to solve the equations of motion. The stability boundaries have also been obtained performing Bolotin's method. It will be indicated that stability boundaries of the sandwich plate depend on periodical load parameters, porosities, skin thickness and temperature.

A Study on the Application of 3-D Sandwich Composite Structures to the Double-deck Light Train Carbody (3-D 복합재료 샌드위치 구조물의 2층 경전철 철도차량 구조체 적용성에 관한 연구)

  • 이영신;김재훈;이호철;길기남;박병준
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.2
    • /
    • pp.92-99
    • /
    • 2000
  • Composites are very useful material for light train carbody due to its high specific strength and lightweight characteristics. The composites, called 3-D board, are developed with a special stitching method. In this process, the glass fiber fabrics of skin material and foam core material are stitched together with glass fiber thread. The glass thread in Z-axis turns into FRP form. The conventional delamination problem can be solved with 3-D sandwich structure. In addition, with the lower density of foam, the weight of the panel and the operation expenses can be highly reduced. To evaluate the usefulness of the 3-D board, the double-deck light train carbody is studied. The stress analyses are carried out under various loads and boundary conditions with FEM Code, ANSYS. On comparing with the aluminum carbody, 3-D board carbody can be reduced by about 2 ton for the total weight of carbody.

  • PDF

Design of EDM Machine Tool Structures for Microfactory with High Stiffness and Damping Characteristics (마이크로팩토리 용 미세방전 공작기계의 고강성/고감쇠 설계)

  • Kim, Ju-Ho;Chang, Seung-Hwan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.205-211
    • /
    • 2007
  • In this paper, foam-composite sandwich structures for EDM machine tool components such as column and column block designed by controlling stacking sequences and cross-sectional dimensions of the composite structures. The original column block is a box-shaped structure made of aluminum connecting a column and a Z-stage of the system. This research was focused on the design of efficient column block structure using a foam-composite sandwich structure which have good bending stiffness and damping characteristics to reduce the mass and increase damping ratio of the system. Vibration tests for getting damping ratio with respect to the stacking angle and thickness of the composites were carried out. Finite element analyses for static defection and vibration behaviour were also carried out to find out the appropriate stacking conditions; that is, stacking sequence and rib configuration. From the test and analysis results it was found that composite-foam sandwich structures for the microfactory system can be successful alternatives for high precision machining.

A Study on the Design of a High-Speed Heddle Frame (고속 직기용 복합재료 헤들 프레임의 설계에 관한 연구)

  • Lee, Chang-Seop;O, Je-Hun;Lee, Dae-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.250-263
    • /
    • 2001
  • The up and down speed of heddle frames that produce woven cloth by insertion of weft yarns between warp yarns has been increased recently much for productivity improvement, which induces higher inertial stresses and vibrations in the heddle frame. the heddle frame is required to reduce its mass because the heddle frame contributes the major portion of the stresses in the heddle frames during accelerating and decelerating. Conventional aluminum heddle frames have fatigue life of around 5 months at 550rpm due to their low fatigue flexural strength as well as low bending stiffness. In this work, since carbon/epoxy composite materials have high specific fatigue strength(S/p), high specific modulus(E/p), high damping capacity and sandwich construction results in lower deflections and higher buckling resistance, the sandwich structure composed of carbon/epoxy composite skins and polyurethane foam were employed for the high-speed heddle frame. The design map for the sandwich beams was accomplished to determine the optimum thickness and the stacking sequences for the heddle frames. Also the effects of the number of ribs on the stress of the heddle frame were investigated by FEM analyses. Finally, the high-speed heddle frames were manufactured with sandwich structures and the static and dynamic properties of the aluminum and the composite heddle frames were tested and compared with each other.

Design and Verification of a Novel Composite Sandwich Joint Structure (새로운 개념의 복합재 샌드위치 체결부 구조의 설계와 검증)

  • Kwak, Byeong-Su;Ju, Hyun-woo;Kim, Hong-Il;Dong, Seung-Jin;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.384-392
    • /
    • 2017
  • Sandwich panels with three different joint configurations were tested to design a novel sandwich joint structure that can effectively support both the tensile and compressive loads. The sandwich core was mainly aluminum flex honeycomb but the PMI foam core was limitedly applied to the ramp area which is transition part from sandwich to solid laminate. The face of sandwich panel was made of carbon fiber composite. For configuration 1, the composite flange and the sandwich panel were cocured. For configurations 2 and 3, an aluminum flange was fastened to the solid laminate by HI-LOK pins and adhesive. The average compressive failure loads of configurations 1, 2, and 3 were 295, 226, and 291 kN, respectively, and the average tensile failure loads were 47.3 (delamination), 83.7 (bolt failure), and 291 (fixture damage) kN, respectively. Considering the compressive failure loads only, both the configurations 1 and 3 showed good performance. However, the configuration 1 showed delamination in the corner of the composite flange under tension at early stage of loading. Therefore, it was confirmed that the structure that can effectively support tension and compressive loads at the same time is the configuration 3 which used a mechanically fastened aluminum flange so that there is no risk of delamination at the corner.

Development of a Cantilevered Patient Table Considering X-ray Transparency (X-선 투과특성을 고려한 외주형 수술용 테이블 개발)

  • Won B.H.;Chun K.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.189-190
    • /
    • 2006
  • A patient table considering x-ray transparency, mechanical safety and compact multi-axis moving mechanism has been developed. The goal of medical imaging technology is to keep radiation exposure of patients during x-raying to a minimum. In order to obtain clear pictures at low dose, however, the x-ray table which supports the patient must be sufficiently permeable to radiation to allow good image resolution. The table top is made of low density foam for x-ray transparent effective area and structural aluminum plate to connect moving mechanism under the table, covered with thin carbon fiber. This sandwich construction is very rigid and lightweight, so the table top can handle relatively heavy load comparing to its cantilevered structure which is unavoidable as long as cooperate with C-arm radiography. To verify the design results finite element static analysis and experimental tests have been done. According to the verification the results well satisfy certification guide lines as a medical device.

  • PDF

Study on the Comparison of Compression Properties between Aluminum Foam and Honeycomb Sandwich Composites (알루미늄 폼 및 허니컴 샌드위치 복합재료의 압축 특성 비교연구)

  • Bang, Seung-Ok;Cho, Jae-Ung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05b
    • /
    • pp.602-604
    • /
    • 2011
  • 본 연구에서는 알루미늄 폼 샌드위치 복합재료와 알루미늄 허니컴 샌드위치 복합재료의 면내 외 방향 압축실험으로 하중-변위의 관계를 분석하고 압축 특성을 비교하였다. 만능재료시험기로 1 mm/min 의 속도로 압축을 하였으며, 카메라로 실험과정을 촬영하고 로드셀에서 나오는 데이터를 컴퓨터로 저장하였다. 압축실험의 결과로 알루미늄 폼 및 허니컴 샌드위치 복합재료에서 하중이 증가함에 따라 심재에 좌굴이 발생하였다. 면내 방향 압축실험에서 알루미늄 폼 및 허니컴 샌드위치 시험편에 작용하는 압축 최대하중은 비슷하지만 비중을 고려하면 알루미늄 허니컴 샌드위치 복합재료가 더 우수한 것으로 판단되며, 면외 방향 압축실험에서도 알루미늄 허니컴 샌드위치 복합재료의 압축 최대하중이 알루미늄 폼 샌드위치 복합재료보다 높게 나왔다.

  • PDF

An Experimental Study on the Failure of a Novel Composite Sandwich Structure (새로운 형상의 복합재 샌드위치 체결부 구조의 파손거동 연구)

  • Kwak, Byeong-Su;Kim, Hong-Il;Dong, Seung-Jin;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.209-215
    • /
    • 2016
  • The failure of composite sandwich structures with thickness and material variation was studied. The main body of the structure is sandwich plate made of the carbon composite face and Aluminum honeycomb core. It is connected with composite laminated flange without core through transition region of tapered sandwich panel with foam core. Tension and compression tests were conducted for the total of 6 panels, 3 for each. Test results showed that the panels under compression are vulnerable to the face failure along the material discontinuity line between two different cores. However the failure load of which panel does not show such failure can carry 16% more load and fails in honeycomb core and face debonding. For the tensile load, the extensive delamination failure was observed at the corner radius which connects the panel and the flange. The average failure load for compression is about 7 times the tensile failure load. Accordingly, these sandwich structures should be applied to the components that endure the compressive loadings.

An Experimental Study on the Pore Structure and Thermal Properties of Lightweight Foamed Concrete by Foaming Agent Type (기포제 종류에 따른 경량기포콘크리트의 기포구조 및 열적특성에 관한 실험적 연구)

  • Kim, Jin-Man;Choi, Hun-Gug;Park, Sun-Gyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.4
    • /
    • pp.63-73
    • /
    • 2009
  • Recently, the use of lightweight panels in building structures has been increasing. Of the various lightweight panel types, styrofoam sandwich panels are inexpensive and are excellent in terms of their insulation capacity and their constructability. However, sandwich panels that include organic material are quite vulnerable to fire, and thus can numerous casualties in the event of a fire due to the lack of time to vacate and their emission of poisonous gas. On the other hand, lightweight foamed concrete is excellent, both in terms of its insulation ability and its fire resistance, due to its Inner pores. The properties of lightweight concrete is influenced by foaming agent type. Accordingly, this study investigates the insulation properties by foaming agent type, to evaluate the possibility of using light-weight foamed concrete instead of styrene foam. Our research found thatnon-heating zone temperature of lightweight foamed concrete using AP (Aluminum Powder) and FP (animal protein foaming agent) are lower than that of light-weight foamed concrete using AES (alkyl ether lactic acid ester). Lightweight foamed concrete using AES and FP satisfied fire performance requirements of two hours at a foam ratio 50, 100. Lightweight foamed concrete using AP satisfied fire performance requirements of two hours at AP ratio 0.1, 0.15. The insulation properties were better in closed pore foamed concrete by made AP, FP than with open pore foamed concrete made using AES.