• Title/Summary/Keyword: aluminum compound

Search Result 158, Processing Time 0.032 seconds

An Experimental Study on the Impact Energy Absorption Mechanism of CFRP/Al Compound Square Tube (CFRP/Al 혼성 사각부재의 충격에너지 흡수 메카니즘의 실험적 고찰)

  • Hwang, Woo Chae;Cha, Cheon Seok;Yang, Yong Jun;Jung, Jong An;Yang, In Young
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.6
    • /
    • pp.12-17
    • /
    • 2015
  • In this study, the collapse characteristic of CFRP/Al compound square tube was investigated experimentally. The conclusions are as follows; The impact collapse characteristic of CFRP/Al compound square tube was found to be the most superior stacking conditions $[90^{\circ}]_8$. It showed that a very stable collapse mode was crushing. In the member with $[0_2{^{\circ}}/90_2{^{\circ}}]_s$ and $[90_2{^{\circ}}/0_2{^{\circ}}]_s$, stacking conditions, $0^{\circ}$ fibers were splayed to the external by laminar bending, while the $90^{\circ}$ fibers were held between the folds of the aluminum member by laminar bending, local buckling and transverse crack. In the member with $[45_2{^{\circ}}/45_2{^{\circ}}]_s$ stacking conditions, fibers were held between the folds of the aluminum member by local buckling and transverse crack.

Microstructure and Mechanical Properties of Ni3Al Matrix Composites with Fine Aluminum Oxide by PM Method

  • Han, Chang-Suk;Choi, Dong-Nyeok
    • Korean Journal of Materials Research
    • /
    • v.28 no.9
    • /
    • pp.495-498
    • /
    • 2018
  • Intermetallic compound matrix composites have been expected to be established as high temperature structural components. $Ni_3Al$ is a representative intermetallic alloy, which has excellent ductility even at room temperature by adding certain alloying elements. $Ni_3Al$ matrix composites with aluminum oxide particles, which are formed by the in-situ reaction between the alloy and aluminum borate whiskers, are fabricated by a powder metallurgical method. The addition of aluminum borate whiskers disperses the synthetic aluminum oxide particles during sintering and dramatically increases the strength of the composite. The uniform dispersion of reaction synthesized aluminum oxide particles and the uniform solution of boron in the matrix seem to play an important role in the improvement in strength. There is a dramatic increase in strength with the addition of the whisker, and the maximum value is obtained at a 10 vol% addition of whisker. The $Ni_3Al$ composite with 10 vol% aluminum oxide particles $0.3{\mu}m$ in size and with 0.1 wt% boron powder fabricated by the conventional powder metallurgical process does not have such high strength because of inhomogeneous distribution of aluminum oxide particles and of boron. The tensile strength of the $Ni_3Al$ with a 10 vol% aluminum borate whisker reaches more than twice the value, 930 MPa, of the parent alloy. No third phase is observed between the aluminum oxide and the matrix.

Recycling Technology of Aluminum UBC To Can Body Sheets

  • Lim, Cha-Yong;Kang, Seuk-Bong
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.173-178
    • /
    • 2001
  • The materials processing factors such as remelting and casting, heat treatment and microstructure, sheet rolling and can body forming in the aluminum can-to-can recycling procedure have been investigated. Aluminum used beverage can(UBC) was remelted together with virgin aluminum. The ceramic filter was used during casting to remove large impurities. As-cast microstructure was composed of large intermetallic compound (mainly $\beta$ -phase) distributed in the aluminum matrix. By heat treatment, $\beta$ -phase was transformed to $\alpha$ -phase which was also formed from $Mg_2$Si particles. The heat treated ingots were hot-rolled at 48$0^{\circ}C$ and cold-rolled to thin sheets. Can making from this thin sheets was successful and earing was measured after can making. There was a critical cold reduction rate for minimum earing. Some cracks were initiated from the impurity particles which was not removed during filtering.

  • PDF

Compouter Image Simulation of ${\gamma}$-Al2O3 in High-Resolution Transimission Electron Microscopy (고분해능 투과전자현미경 연구에 의한 ${\gamma}$-Al2O3의 상 전산모사)

  • ;R. Gronsky
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.2
    • /
    • pp.276-288
    • /
    • 1989
  • Interpretation of high-resolution transmission electron microscopy images of defects and complex structures such as found in ceramics generally requires matching of the images with compound image simulations for reliable interpretation. A transmission electron microscopy study of the aluminum oxide was carried out at high-resolution, so that the crystal structure of the aluminum oxide could be modelled on an atomic level. In conjunction with computer simulation comparisons, the images reveal directly the atomic structure of the oxide. Results show that comparison between experimental high-resolution electron microscopy images and simulated images leads to a one to one correspondence of the image to the atomic model of the aluminum oxide. The aluminum atoms are disordered in the octahedral sites and the tetrahedral sites in the spinel aluminum oxide.

  • PDF

A Study on the Synthesis of Aluminum Tartrate from Aluminum Chloride Solutions (염화(鹽化)알루미늄 수용액(水溶液)으로부터 Aluminum Tartrate의 합성(合成) 연구(硏究))

  • Lee, Hwa-Young
    • Resources Recycling
    • /
    • v.20 no.2
    • /
    • pp.54-59
    • /
    • 2011
  • An investigation on the synthesis of aluminum tartrate, one of the aluminum organic compounds, has been performed using aluminum chloride solution as a raw material. For this aim, the effect of the ratio of ethanol/Al solution and pH on the synthesis of aluminum tartrate has been examined and aluminum tartrate synthesized has also been characterized in terms of the chemical composition, X-ray diffraction pattern, particle size distribution, and SEM analysis. As a result, the synthesis more than 97% could be obtained under the conditions of pH more than 3.0 at the ratio of ethanol/Al solution of 3.0. From the chemical analysis of aluminum tartrate synthesized in this work, the content of $NH_4$, Al and C was found to be 9.10, 4.83 and 25.8%, respectively. In addition, aluminum tartrate synthesized from the aluminum chloride solution was found to be $(NH_4)_3Al(C_4H_4O_6)_3$.

Interfacial Characteristics of Al-Cu Cast Composites for High Conductivity Applications (고전도성 부품용 Al-Cu 주조복합재료의 계면 특성)

  • Kim, Jeong-Min;Kim, Nam-Hoon;Ko, Se-Hyun
    • Journal of Korea Foundry Society
    • /
    • v.38 no.3
    • /
    • pp.55-59
    • /
    • 2018
  • To optimize the conductivity and to reduce the weight by as much as possible, Al-Cu composites were prepared through a suction-casting procedure. Pure copper metal foam was infiltrated by melted aluminum with the use of the vacuum, after which warm rolling was conducted to remove several remaining pores at the interface between the Cu foam and the aluminum matrix. Despite the short casting time, significant dissolution of Cu into the melt was observed. Moreover, it was found that various Al-Cu intermetallic compounds arose at the interface during the isothermal heating process after the casting and rolling steps. The average thickness of the Al-Cu intermetallic compound tended to increase in proportion to the heating time. The electrical and thermal conductivity levels of the cast composites were found to be comparatively low, mainly due to the dissolution of the Cu foam and the formation of intermetallics at the interface.

Effects of GBF Treatment Conditions and Scrap Ratio on the Electric Conductivity of Commercial Pure Aluminum (공업용 순알루미늄의 전기전도도에 미치는 스크랩비율 및 GBF처리조건의 영향)

  • Hwang, Nam-Gyu;Kim, Young-Chan;Choi, Se-Won;Kang, Chang-Seok;Hong, Sung-Kil
    • Journal of Korea Foundry Society
    • /
    • v.31 no.3
    • /
    • pp.130-136
    • /
    • 2011
  • Effects of GBF (gas bubbling filtration) treatment conditions and scrap ratio on the electric conductivity of a commercial pure aluminum for diecasting were investigated using by specific gravity and electrical conductivity measurement system, hydrogen gas analyzer, XRD, and EDS. Electrical conductivities of specimen mixed Al scrap ratio until 60% from 0% were decreased with increasing the precipitates amount and size of AlFeSi ternary intermetallic compound on the grain boundary as well as amount of porosity in the grain. On the other hand, electrical conductivities was reincreased gradually in spite of scrap ratio increase from 80% to 100%. Size of AlFeSi compound formed on the grain boundary were coarsened with the increament of scrap ratios untill 80% and GBF treatment time simultaneously.

X-RAY PHOTOELECTRON SPECTOSCOPIC ANALYSIS OF ALUMINUM COMPOUND ADSORBED ON PULP FIBER SURFACES

  • Takuya Kitaoka;Hiroo Tanaka
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.04b
    • /
    • pp.239-244
    • /
    • 1999
  • aluminum sulfate (alum) as a representative retention aid in papermaking processes was added to pulp suspensions, and the aluminum components adsorbed on the pulp were investigated quantitatively by two types of X-ray elementary analyses with regard to simultaneous changes of their surface charges. X-ray photoelectron spectroscopy (XPS) and X-ray fluorescence analysis (XFA) were applied to determine the aluminum components retained in pulp pads up to ca. 10 nm and 100${\mu}$m depth, respectively. In other words, XPS was utilized to analyze the outermost surface layers of the samples, and XFA was available for measurement of their extensive regions. A particle charge detector (PCD) was used to monitor streaming potentials at various pHs of the pulp mixtures under moderate sharing conditions. At pH 4.5 of pulp suspensions containing alum, surface charges of pulp fibers varied from negative to slight negative (approximately neutral) according to adsorption of aluminum components onto the pulp fibers. Subsequently, when a dilute NaOH solution in limited amounts was added to pulp mixtures, both streaming potentials and surface aluminum content of the pulp fibers increased distinctly although little total aluminum retention increased. Further addition of alkali solutions brought drastic decreases of the surface charges and surface aluminum content, while total aluminum content, on the contrary, increased gradually under neutral conditions. These results indicate that residual aluminum ions remained in pulp suspensions are predominantly adsorbed on surfaces of pulp fibers by adequate alkali additions and they must sufficiently cationize the fiber surfaces with increases of somewhat cationic aluminum complexes formed on the surfaces. On the other hand, aluminum components formed in higher pH ranges have nearly no contribution to improvement of charge properties of the pulp fiber surfaces, even though aluminum retention in pulp pads increases. XPS and XFA analyses combined with streaming potential measurement using a PCD suggest close relationships between aluminum content on the pulp fiber surfaces and their charge properties.

Development of Heat- and Creep-resistant Fine-grained Rapidly Solidified P/M Aluminum Alloy

  • Kaji, Toshihiko;Tokuoka, Terukazu;Nishioka, Takao
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.720-721
    • /
    • 2006
  • The new alloy$^{1)}$ is made from rapidly solidified Al-Ni-Zr-Ce aluminum alloy powder, and has the following unique mechanical characteristics:(1) The stress-strain curve shows a yield point; (2) The alloy shows high heat resistance; (3) Although the alloy is submicron particle diameter, it shows excellent creep resistance. We observed the micro structures of this new alloy, and it is thought that is based on the following reasons:(1) The dislocation strongly adheres to the alloy's many crystal boundaries;(2) The added alloying elements have a small diffusion coefficient in aluminum;(3) The tiny intermetallic compound particles crystallizing at the grain boundary.

  • PDF