• Title/Summary/Keyword: aluminium sulfate

Search Result 73, Processing Time 0.024 seconds

특이산성토에 대한 석회 및 규회석의 효과 (The Effect of Lime and Wollastonite on an Acid Sulfate Soil)

  • 박내정;박영선;이규하;김영섭
    • 한국토양비료학회지
    • /
    • 제5권1호
    • /
    • pp.25-32
    • /
    • 1972
  • 특이산성토양에서 석회 및 규회석의 효과를 검토하고 규회석중에 있는 석회와 규산의 개발 효과를 분리 해석하기 위하여 석회 및 규회석을 석회당량을 기준으로 처리하여 포장 벼 재배시험과 실내정온 담수시험을 행한 결과는 다음과 같다. 1. 석회물질로서 석회 및 규회석을 석회당량으로 시용했을때는 산성중화 효과는 꼭 같았다. 2. 석회는 반응성이어서 실내에서 토양과 잘 섞을경우에는 $25^{\circ}C$에서 3일이면 거의 중화점에 이르고 포장에서는 2주일전에 시용하여도 이앙묘에 알카리해를 주어 현저히 생육초기 분얼수을 감소시켰으나 규회석은 반응성이 약하여 1~2주후에 중화점에 이르렀고 포장에서도 전연 알카리 피해를 주지 않았다. 3. 석회, 규회석 모두 토양 및 토양용액중의 Al 함량을 같이 효율적으로 감소시키나 $Fe^{2+}$은 일정하지 않았다. 그러나 포장에서 이들의 피해증상이 미미하게 나타나는 정도로 이들 유해물질 감소에 의한 증수효과는 크게 인정되지 않았다. 4. 석회시용은 토양중 규산의 유효도를 현저히 높였고 수도체중 $SiO_2$ 함량을 현저히 증가시켰으며 규회석은 석회효과 이외에도 자체에서 $SiO_2$를 방출하여 수확기 볏짚중 $SiO_2$ 함량을 더욱 증가시켰다. 5. 따라서 석회물질시용시 식물체중 규산의 흡수를 증가시킴으로서 목도열병 이병율을 감소시키고 등숙율을 높임으로서 증수효과를 얻을수 있었다. 6. 석회, 규회석중 어느하나를 시용함으로서 다른것의 효과를 현저히 감소시켰다. 7. 규회석은 생육초기 분얼수 증가에 현저한 효과가 있었으나 유효경비율의 감소로 주당수수의 증가는 없었다. 8. 이들 석회물질은 수당입수를 어느 정도 증가시키는 경향이었다.

  • PDF

첨가제(添加劑) 알칼리 법(法)에 의한 일본 잎갈 나무의 펄프화(化) 특성(特性)에 관(關)한 연구(硏究) (Studies on the Pulping Characteristics of Larchwood (Larix leptolepis Gordon) by Alkaline Process with Additives)

  • 임기표;신동소
    • Journal of the Korean Wood Science and Technology
    • /
    • 제7권2호
    • /
    • pp.3-30
    • /
    • 1979
  • 우리나라에서는 일본잎갈나무가 대량(大量) 조림(造林)되어 축적(蓄積)과 생장량(生長量)으로 보아 주요(主要)한 조림(造林) 수종(樹種)이나 각종(各種) 추출물(抽出物)과 활성(活性) phenol 성분(成分)이 많고 심재율(心材率)이 높아 펄프화(化)에서 수율저하(收率低下)와 표백곤란(漂白困難)이 초래(招來)되어 펄프원료(原料)로서의 이용(利用)이 기피(忌避)되고 있다. 따라서 일본잎갈나무의 화학(化學)펄프 원료화(原料化)의 제고(提高)로서 펄프수율(收率) 향상(向上)과 표백성(漂白性) 개선(改善)을 위하여 셀룰로오스보호제를 첨가(添加)한 소다펄프화(化) 특성(特性)을 구명(究明)하였다. 증해(蒸解)는 최고온도(最高溫度) 170$^{\circ}C$까지 90분간(分間) 가열(加熱)하고 90분간(分間) 유지(維持)하는 일정조건(一定條件)으로 황화도(黃化度) 25%, 활성(活性)알칼리 18%의 크라프트법(法)으로 일본잎갈나무의 수령별(樹齡別) 펄프화(化) 특성(特性)을 구명(究明)하고, 18%활성(活性) 알칼리의 소다증해(蒸解)에 첨가제로 2.5% $MgSO_4$, 2.5% $ZnSO_4$, 2.5% $Al_2(SO_4)_3$, 2.5% KI, 2.5% hydroquinone, 2.5% ethylene diamine 또는 0.1~1.0% anthraquinone를 가(加)하여 15년생(年生) 일본잎갈나무의 변재(邊材)와 심재별(心材別) 소다펄프화(化) 특성(特性)을 구명(究明)한 후(後), 0.5% anthraquinone과 18% 활성(活性)알칼리로 증해(蒸解)된 펄프를 3%, 6%, 9% NaOH를 투입(投入)한 30%의 고농도(高農度)펄프를 상압(常壓) 산소표백(酸素漂白)하고, 이산화염소(二酸化鹽素)의 DED로 계속표백(繼續漂白)한 결과(結果) 다음과 같은 결론(結論)을 얻었다. 1. 일본잎갈나무의 수령별(樹齡別) 크라프트펄프는 수령간(樹齡間)에 펄프의 정선수율(精選收率)은 차(差)가 없으나, 수령(樹齡)이 증가함에 따라 펄프의 총수율(總收率)은 감소(減少)하고 비인열도(比引裂度)는 증가하였으며, 목재(木材)의 심재율(心材率), 용적밀도(容積密度) 수(數), 섬유장(纖維長) 및 온수추출물(溫水抽出物)도 증가하는 경향(傾向)을 나타냈다. 2. 일본잎갈나무의 변재(邊材)와 심재별(心材別) 소다증해(蒸解)에 셀룰로오스 보호제로 첨가(添加)된 7종(種)의 첨가제들은 변재(邊材)와 심재(心材)펄프화(化)에 대한 영향(影響)이 대체로 소다법(法)보다 증가되었으나 크라프트법(法)에 미치지 못하고, 크라프트펄프법(法)에 가까운 첨가제는 펄프수율(收率)에서 KI $MgSO_4$, anthraquinone이며, 특(特)히 다른 첨가제의 25분(分) 1이 첨가(添加)된 anthraquinone은 펄프의 정선수율(精選收率)과 KappaNo. 및 비파열도(比破裂度)에서 다른 첨가제보다 효과적이었다. 3. anthraquinone첨가량(添加量)에 따른 변재(邊材)와 심재별(心材別) 소다펄프의 품질(品質)은 변재(邊材)와 심재(心材) 모두 첨가량(添加量)이 많을수록 탈(脫)리그닌도(度)와 펄프수율(收率)이 높으나 활성(活性)알칼리가 낮으면 정선수율(精選收率)도 낮았으며 활성(活性)알칼리 17%의 소다 증해액(蒸解液)에 0.5% anthraquinone을 첨가(添加)한 조건(條件)에서는 크라프트펄프보다 비교적(比較的) 양호(良好)한 펄프가 얻어졌다. 4. 일반화(一般化)된 CEDED표백중(漂白中) 염소화(鹽素化)와 알칼리 추출단계(抽出段階) 대신(代身)에 30%의 고농도(高濃度)펄프에 상압(常壓) 산소표백(酸素漂白)한 ODED표백(漂白)은 산소단계(酸素段階)에서 변재(邊材)와 심재(心材)펄프 모두 NaOH투입량(投入量)이 증가될수록 백색도(白色度)와 비인열도(比引裂度)가 향상(向上)되나 펄프수율(收率)과 Kapa No.는 감소(減少)되었으며, NaOH 투입량(投入量)이 높을수록 펄프품질(品質)은 CEDED 표백(漂白)과 유사(類似)하나 펄프수율(收率)이 떨어졌다. 5. 따라서 본(本) 실험(實驗)에서는 펄프수율(收率) 향상(向上)을 위해서는 원료(原料)에서 심재율(心材率)이 낮은 수령(樹齡)의 경우가 펄프재(材)로 적당(適當)하고, 0.5% anthraquinone을 첨가(添加)한 활성(活性)알카리 18%의 소다증해(蒸解)하는 것이 적당(適當)하며 폐수중(廢水中)의 염소화합물(鹽素化合物)을 감소(減少)시키기 위하여서는 펄프농도(濃度) 30%이상(以上)의 고농도(高濃度)에서 상압(常壓) 산소(酸素)로 표백후(漂白後) 이산화(二酸化) 염소(鹽素)로 DED 표백(漂白)하면 일본잎갈나무의 크라프트법(法)보다 비교적(比較的) 우수(優秀)한 펄프를 얻을 수 있다.

  • PDF

전주, 군산, 남원지역 강수의 Sr, Pb동위원소 지화학 (The Sr and Pb Isotopic and Geochemical Properties of the Atmospheric Bulk Deposition of Jeonju, Gunsan, and Namweon Areas)

  • 전서령;정재일
    • 자원환경지질
    • /
    • 제38권4호
    • /
    • pp.463-479
    • /
    • 2005
  • 전북의 전주, 군산, 남원지역에서 주기적으로 채수된 강수(bulk deposition)를 지화학적으로 고찰하고 Sr과 Pb 동위원소의 환경추적인자로서의 적용 여부를 알아보고자 하였다. 강수는 pH $4\~7$의 약산성내지 산성을 띄며, 건기에는 높고, 우기에는 자연산성도 수준인 5.0수준을 유지한다. 강수에 의한 희석작용으로, 우기이후의 강수는 TDS 및 EC도 낮아지나 다시 건기에 들어서면서 상승한다. 겨울철에는 난방연료의 연소에 의해 $SO_4$$NO_3$이 높은 함량을 보이며, 여름철은 $CO_2$가스의 영향으로 탄산농도가 약간 높은 경향을 보인다 양이온은 겨울철에 Na의 함량이 높고, 봄부터 여름철에는 Ca의 함량이 높게 나타난다. 지리산에 인접한 남원이 전반적으로 낮은 EC 및 TDS값을 가지고 인구밀집과 도시화가 심한 전주지역은 대체로 높다. 남원지방은 다량의 수목의 호흡작용에 의한 대기중 이사화탄소의 함량이 높아 여름철 탄산 농도가 타 지역에 비해 높다. 군산지역은 해염의 영향으로 대기중 Cl의 함량이 높다. Al, Cu, Zn은 TDS와 상관계수 0.5이상의 양호한 상관관계를 보여 이들 원소가 미량원소 중 강수의 화학적 성상에 영향을 미치는 원소들 이라고 볼 수 있다. $^{87}Sr/^{86}Sr$ 값은 0.7109-0.7128으로 세 지역 모두 유사하며, 해수보다 다소 높은 값을 보이고 있어 주변의 토양입자, 꽃가루, 기타 인위기원의 에어로졸 등의 영향이 있음을 암시하나 지역 전반에 걸친 자세한 동위원소적 고찰이 있어야만 보다 정확한 해석이 가능할 것으로 생각된다. 강수의 Pb 동위원소 조성도 세 지역 모두 유사하며, 서울 에어로졸의 Pb 동위원소 조성 범위내에 포함되고 북경의 에어로졸 범위에서는 약간 벗어나 있다. 이는 한반도내의 대기 중에 함유되어 있는 Pb은 모두 유사한 기원으로 휘발유의 연소에서 발생하는 것으로 생각되며, 중국으로부터 기원한 Pb의 존재 가능성은 내포하고 있으나 그 기여율은 적을 것으로 보인다.