• Title/Summary/Keyword: aluminium alloy

Search Result 366, Processing Time 0.032 seconds

Nonlinear dynamics of SWNT reinforced Aluminium alloy beam

  • Abdellatif Selmi;Samy Antit
    • Steel and Composite Structures
    • /
    • v.51 no.4
    • /
    • pp.407-416
    • /
    • 2024
  • The main objective of the present paper is to investigate the nonlinear vibration of buckled beams fixed at both ends and made of Aluminium allay (Al-alloy) reinforced with randomly dispersed Single Walled Carbon Nanotube (SWNT). The Mori-Tanak (M-T) micromechanical approach is selected to predict the homogenized material properties of the beams. The differential equation of motion governing the nonlinear behavior of the Euler-Bernoulli homogeneous beam is solved using an analytical method. The influences of diverse parameters including axial load, vibration amplitude, SWNT volume fraction, SWNT aspect ratio and beam slenderness ratio on the nonlinear frequency are studied.

Studies on weldment performance of Ti/Al dissimilar sheet metal joints using laser beam welding

  • Kalaiselvan, K.;Elango, A.;Nagarajan, N.M.;Mathiazhagan, N.;Vignesh, Kannan
    • Coupled systems mechanics
    • /
    • v.7 no.5
    • /
    • pp.627-634
    • /
    • 2018
  • Laser beam welding is more advantageous compared to conventional methods. Titanium/Aluminium dissimilar alloy thin sheet metals are difficult to weld due to large difference in melting point. The performance of the weldment depends upon interlayer formation and distribution of intermetallics. During welding, aluminium gets lost at the temperature below the melting point of titanium. Therefore, it is needed to improve a new metal joining techniques between these two alloys. The present work is carried for welding TI6AL4V and AA2024 alloy by using Nd:YAG Pulsed laser welding unit. The performance of the butt welded interlayer structures are discussed in detail using hardness test and SEM. Test results reveal that interlayer fracture is caused near aluminium side due to low strength at the weld joint.

P/M Aluminium Automobile Parts in Sumitomo Electric Ind. Ltd.

  • Akechi, Kiyoaki
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1997.04a
    • /
    • pp.5-5
    • /
    • 1997
  • Rapidly-solidified P/M aluminium alloys for automobile and home appliance industries were developed. Rapidly-solidification made it possible to refine microstructures and to expand the range of alloy composition. For example, Al-Si alloys containing transition metal have lower thermal expansion coefficient, more excellent wear resistance, higher strength, and better machinability than those of conventional aluminium alloys. Therefore, in Japan, the technologies on powder-extrusion and powder-forging of aluminium alloy powders are developed for fifteen years, and applied to several parts, such as cylinder liners of motor cycle engines, rotors and vanes of compressors for car air conditioner, oil pump rotor for racing car, and so on. In this presentation, applications for automobile are mentioned. In particular, cylinder liners made of particle-dispersed composites with fine alumina and graphite are in detail described.

  • PDF

Formation of Oxide Inclusions in the Molten Aluminium Alloys (알루미늄합금 용탕중의 산화개재물 형성)

  • Lim, Jeong-Ho;Kim, Ki-Bae;Yoon, Woo-Yung;Yoon, Eui-Pak
    • Journal of Korea Foundry Society
    • /
    • v.18 no.5
    • /
    • pp.439-449
    • /
    • 1998
  • Formation of oxide inclusions in the molten aluminium alloys during solidification is investigated. The oxidation tendency of both Al-4.5wt%Cu and Al-7wt%Si alloys is increased with melt temperature, particularly over $700^{\circ}C$. However, an Al-5wt%Mg alloy exhibits a decreasing mode over $800^{\circ}C$. The oxidation behavior with holding time shows the S curve shape for all of the alloys. It is shown that the mechanism of oxidation of Al-5wt%Mg alloy has a two step process different from that of Al-4.5wt%Cu and Al-7wt%Si alloys. The species and morphology of oxide inclusions in each alloy is also shown. The microstructure was more coarsened during solidification when the melt contains a large amount of oxide inclusion than when it doesn't. This result can be explained in terms of both the hindrance of heat extraction by oxide film formed on the aluminium melt and the difference of heat capacity between the aluminium melt and oxide inclusion during solidification.

  • PDF

A Study on the Local Grain Coarsening in Surface of Al 7050 Forged Part (Al 7050 단조품 표면의 입도성장층 방지에 관한 연구)

  • Lee, Jeong-Hwan;Lee, Sang-Yong;Lee, Yeong-Seon
    • 연구논문집
    • /
    • s.26
    • /
    • pp.113-120
    • /
    • 1996
  • Age hardenable aluminium alloys show high specific strength, good thermal and electrical conductivity as well as lightness, and are typical aircraft materials. High fatigue strength and good resistancy against stress corrosion cracking are also important for aircraft aluminium alloys. Al alloy 7050 has been developed to meet the above mentioned requirements and the use of this alloy as forged aircraft part becomes more important. However, forged 7050 parts showed undersiable structures such as severe local grain coarsening in surface area and unproper metal flow that is degrading mechanical properties. In this paper, microstructural aspects of die forging in the Al alloy 7050 are investigated. Also suggested are the optimal forging conditions for microstructural control of Al alloy 7050.

  • PDF

Effect of Strain Rate and Pre-strain on Tensile Properties of Heat-treated A5082 and A6060 Aluminium Wrought Alloys (열처리한 A5082와 A6060합금의 인장특성에 미치는 변형율속도 및 예비변형율의 영향)

  • Lee, Choongdo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.4
    • /
    • pp.161-172
    • /
    • 2020
  • The tensile property of A5082 and A6060 aluminium wrought alloys was investigated, in terms of the strain rate sensitivity on alloy conditions by heat treatment and bake hardenability on pre-strain prior to strain ageing. The tensile test was carried out in a range of strain rate of 4.17 × 10-5 s-1 ~ 4.17 × 10-5 s-1 in room temperature and the nominal range of pre-strain was 3.0 ~ 10.5%. The tensile deformation of A5082 alloys is characterized as typical case of dynamic strain ageing with negative strain rate sensitivity for all conditions, and the tensile strength indicates a similar level regardless of alloy conditions, except only in full annealed condition. The stress-relief annealing on A6060 alloys can induce practical decrease in strength level of over approximately 100 MPa without any ductility loss, compared to as-rolled condition, while a full annealed and aged condition leads remarkable strengthening effect with the decrease of tensile elongation. Additionally, the bake hardenability of A5082 alloy by strain ageing indicates a negative dependence upon the increase of pre-strain, while A6060 alloy exhibits a positive sign even in low level relatively compared with conventional SPCC.

A Simulation Case Study on Impact Safety Assessment of Roadside Barriers Built with High Anti-corrosion Hot-dip Alloy-coated Steel (용융합금도금 강판 적용 노측용 방호울타리 충돌 안전성 평가 해석 사례 연구)

  • Noh, Myung-Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.2
    • /
    • pp.83-89
    • /
    • 2016
  • As the world's industrial development quickens, the highways and regional expressways have been expanding to serve the logistics and transportation needs of people. The burgeoning road construction has led to a growing interest in roadside installations. These must have reliable performance over long periods, reduced maintenance and high durability. Steel roadside barriers are prone to corrosion and other compromises to their functionality. Therefore, using high anti-corrosion steel material is now seen as a viable solution to this problem. Thus, the objective of this paper is to expand the scope of applications for high anti-corrosion steel material for roadside barriers. This paper assesses the impact safety such as structural performance, occupant protection performance and post-impact vehicular response performance by a simulation review on roadside barriers built with high strength anti-corrosion steel materials named as hot-dip zinc-aluminium-magnesium alloy-coated steel. The simulation test results for the roadside barriers built with high strength anti-corrosion steels with reduced sectional thickness meet the safety evaluation criteria, hence the proposed roadside barrier made by high strength and high anti-corrosion hot-dip zinc-aluminium-magnesium alloy-coated steel will be a good solution to serve safe impact performance as well as save maintenance cost.

The Development of Aluminium Alloy Piston by Powder Forging Method (분말단조법에 의한 알루미늄 합금 피스톤 개발)

  • Kang, Dae-Yong;Park, Jong-Ok;Kim, Kil-Jun;Kim, Young-Ho;Cho, Jin-Rae;Lee, Jong-Heon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.8
    • /
    • pp.87-93
    • /
    • 2000
  • Powder Forging technology is being developed rapidly because of its economic merits and the possibility of lightening parts by replacing steel parts with aluminum ones especially in automotive parts manufacturing. Recently Powder Forging process is widely used for manufacturing primary mechanical parts as a combined technology of P/M and precision hot forging. This paper describes the process conditions for the powder forging of Aluminium alloy piston. For example powder alloy design preform design by FEM simulation cold of compaction of specimens and preform sintering of preform powder forging process. The characteristics of sintered compaction of specimens and preform sintering of preform powder forging process. The characteristics of sintered products and final forged piston ones are investigated with tensile strength hardness ductility and so on. Eventually its results prove the improve mechanical properties of the piston produced by powder forging.

  • PDF

Wear Property of $Al_2O_3-Particle-Reinforced$ Aluminium Composite

  • Sahin, Y.;Motorcu, A.Riza
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.201-202
    • /
    • 2002
  • The abrasive wear behaviour of $Al_2O_3$ particle-reinforced aluminium composite was investigated. The wear rate of the composite and the matrix alloy has been expressed in terms of the applied load, sliding distance and particle size using linear factorial design approach.

  • PDF